Tag: introduction to calculus - differentiation

Questions Related to introduction to calculus - differentiation

The second order differential equation is :

  1. ${ y' }^{ 2 }+x={ y }^{ 2 }$

  2. $y'+y''+y=\sin { x } $

  3. $y'''+y''+y=0$

  4. $y'=y$


Correct Option: B
Explanation:

We know that, the order of the differential equation is the order of highest derivative.
So, equation $y'+y''+y=\sin { x } $ is the second order differential equation.

$f\left( x \right) = \left| {x - 1} \right| + \left| {x + 2} \right| + \left| {x - 3} \right|$ is not differentiable at

  1. 2 points

  2. 3 points

  3. 4 points

  4. 1 point


Correct Option: B
Explanation:

Given $f(x)=\left | x-1 \right |+\left | x+2 \right |+\left | x-3 \right |$

$\therefore f(x)=(1-x)+-(x-2)+(3-x)$   For $x<-2$
  $\quad \quad =2-3x$    For $x<-2$
$f(x)=(1-x)+(x+2)+(3-x)$   For $-2\leq x< 1$
   $\quad \quad=6-x$       For $-2\leq x< 1$
$f(x)=x-1+x+2+3-x$ For $1\leq x< 3$
   $\quad \quad =4+x$    For $1\leq x< 3$
$f(x)=x-1+x+2+x-3$
   $\quad \quad =3x-2$ For $x\geq 3$

$\therefore f(x) =\left \{ 2-3x \right.\quad x<-2$
                  $ \left \{ 6-x \right.\quad -2\leq x< 1$
                  $ \left \{ 4+x \right.\quad 1\leq x< 3 $
                  $ \left \{ 3x-2 \right.\quad x\geq 3$

$ {f}'(x)=\left { -3 \right. \quad x<-2 $
               $  \left { -1 \right. \quad -2\leq x< 1 $
               $  \left { 1 \right. \quad \ 1\leq x< 3 $
               $   \left { 3 \right.\quad x\geq 3$
   $\therefore f(x)$ is not differentiable at x=-2,1,3