Tag: introduction to calculus - differentiation
Questions Related to introduction to calculus - differentiation
If the graph of the equation $y = 2x^2 - 6x + C$ is tangent to the $x$-axis, the value of $C$ is
$f\left( x \right) =\begin{cases} x;\quad x<1 \ 3-x;\quad 1\le x\le 3 \end{cases}$ then $f^{'}(x)=$
The domain of the derivative of the function
$\displaystyle f\left ( x \right )=\begin{cases}
\tan^{-1}x & \text{ if } \left | x \right |\leq 1 \
\frac{1}{2}\left ( \left | x \right |-1 \right ) & \text{ if } \left | x \right |> 1
\end{cases}$
Let $f(x)=ax^2+bx+c$ such that $f(1)=f(-1)$ and a, b, c are in Arithmetic Progression.
If $y=\displaystyle\dfrac{1}{a-z}$, then $\displaystyle\dfrac{dz}{dy}$ is:
Which of the following given statements is/are correct?
The value of $\displaystyle \frac{d}{dx} (|x-1|+ |x-5|) $ at x = 3 is
Let $f : R \rightarrow R$ be a function defined by $f(x)= \max\left { x, x^3 \right }$. The set of all points where $f(x)$ is NOT differentiable is:
If $f(x) = \left{\begin{matrix}e^x+ax & x< 0 \ b(x-1)^2 & x \geq 0 \end{matrix}\right.$ is differentiable at $x= 0$, then $(a, b)$ is
If $f(x) =x[x \sqrt{x}-\sqrt{x+1}]$, then: