Tag: part number

Questions Related to part number

Convert the following into fraction.
$22.5\%$

    • $\dfrac{9}{40}$
  1. $\dfrac{225}{100}$

  2. $\dfrac{22}{100}$

  3. $\dfrac{5}{100}$


Correct Option: A
Explanation:
     $22.5$%
$=\dfrac{22.5}{100}$
$=\dfrac{48}{2}\times \dfrac{1}{100}$
$=\dfrac{9}{40}$

Evaluate the following :

$\displaystyle  8 \times \dfrac {\dfrac{5}{24}}{\dfrac {7}{12}} $.

  1. $\displaystyle \frac {5 }{24}$

  2. $\displaystyle \frac {20}{7}$

  3. $\displaystyle \frac {2}{7}$

  4. $\displaystyle \frac {21}{5}$


Correct Option: B
Explanation:

Given, $ 8 \times \displaystyle \frac {\frac {5}{24}}{\frac {7}{12}} $

$ \therefore 8 \times \displaystyle \frac {\frac {5 }{24}}{\frac {7}{12}} = 8 \times \frac {5\times 12}{7 \times 24}   $

$=\displaystyle \frac {5 \times 4}{7}$

$= \displaystyle \frac {20}{7} $

$I = \displaystyle \frac{3}{4}\div \frac{5}{6}$ 

$II = 3\displaystyle \div $[($4\displaystyle \div 5$)$\displaystyle \div 6$]
$III = [3\displaystyle \div (4\displaystyle \div 5)]\displaystyle \div 6$
$IV = 3\displaystyle \div 4(5\displaystyle \div 6)$
Select the correct option from the following.

  1. I and II are equal

  2. I and IV are equal

  3. I and III are equal

  4. All are equal


Correct Option: B
Explanation:

$ I=\cfrac{3}{4}\times \cfrac{6}{5}=\cfrac{9}{10}$


$II=3\div \left [ \cfrac{4}{5}\times \cfrac{1}{6} \right ]=3\times \cfrac{15}{2}=\cfrac{45}{2}$

$III=\left [ 3\div \cfrac{4}{5} \right ]\div 6=3\times \cfrac{5}{4}\times \cfrac{1}{6}=\cfrac{5}{8}$

$ IV=3\div 4\times\cfrac{5}{6}=3\times \cfrac{3}{10}=\cfrac{9}{10}$

Hence, $I$ and $IV$ are equal.

The least fraction that must be added to $\displaystyle1\frac{1}{3}\div 1\frac{1}{2}\div 1\frac{1}{9}$  to make the result an integer is:

  1. $\displaystyle\frac{4}{5}$

  2. $\displaystyle\frac{3}{5}$

  3. $\displaystyle\frac{2}{5}$

  4. $\displaystyle\frac{1}{5}$


Correct Option: D
Explanation:

$\displaystyle 1\frac{1}{3}\div 1\frac{1}{2}=\frac{4}{3}\div \frac{3}{2}\div \frac{10}{9}$
$\displaystyle =\frac{4}{3}\times \frac{2}{3}\div \frac{10}{9}=\frac{8}{9}\times \frac{9}{10}=\frac{4}{5}$
$\displaystyle \therefore \frac{1}{5}$ should be added to $\displaystyle \frac{4}{5}$ to make it an integer

The number of positive fractions m/n such that $1/3< m/n < 1$ and having the property that the fraction remains the same by adding some positive integer to the numerator and multiplying the denominator by the same positive integer is

  1. $1$

  2. $3$

  3. $6$

  4. infinite


Correct Option: B
Explanation:

$m, n$ are integer
$1/3 < m/n < 1 $...(i)
$\displaystyle \frac{m + \alpha}{n \alpha} = \frac{m}{n}        n \neq 0$
$\alpha = \displaystyle \frac{m}{m - 1} = +$ve integer
$\therefore m = 2$
Using equation (i)
$n = 3, 4, 5$
$\therefore \displaystyle \frac{m}{n}= \frac{2}{3} , \frac{2}{4}, \frac{2}{5}$

$\dfrac{25 \% \, of  \ 50\% \ of \ 100 \%}{25 \,of \,100 \times 50 \%\, of \,100 }$ is equal to ______ .

  1. $ 0.0001\%$

  2. $ 0.1\%$

  3. $ 0.01\%$

  4. $ 1\%$


Correct Option: D
Explanation:

Given $\cfrac {25\%\quad of\quad 50\%\quad of\quad 100\%}{25\quad of\quad 100\times 50\%\quad of\quad 100}$

So, first solving solving numerator
$\cfrac {25}{100}$ of $\cfrac {50}{100}$ of $\cfrac {100}{100}$ 
$\implies \cfrac {25}{100}\left(\cfrac {50}{100}\left(\cfrac {100}{100}\right)\right)\quad equation (1)$  
Now taking denominator
$25$ of $100\times 50\%$ of $100$ 
So, $25$ of $100$ means $\cfrac {25}{100}$ which is $\cfrac {1}{4}$
$50\%$ of $100=\cfrac {50}{100}\times 100=50$
So, denominator becomes $\cfrac {1}{4}\times 50\quad equation (2)$
$\cfrac {Numerator}{Denominator}=\cfrac {equation (1)}{equation (2)}$
$=\cfrac {\cfrac {25}{100}\left(\cfrac{50}{100}\left(\cfrac{100}{100}\right)\right)}{\cfrac {1}{4}\times 50}$
$=\cfrac {\cfrac {1}{4}\times \cfrac {1}{2}}{\cfrac {1}{4}\times 50}$
$=\cfrac {1}{2}\times 50$
In terms of percent $=\cfrac {1}{100}\times 100=1\%$

The least number among $\displaystyle \frac{4}{9}, \, \sqrt{\frac{9}{49}},$ 0.45 and $(0.8)^2$ is

  1. $\displaystyle \frac{4}{9}$

  2. $\displaystyle \sqrt{\frac{9}{49}}$

  3. 0.45

  4. $(0.8)^2$


Correct Option: B
Explanation:
: Decimal equivalents of the given numbers.
$\displaystyle \frac{4}{9} \, = \, 0.44; \, \sqrt{\frac{9}{49}} \, = \, \frac{3}{7} \, = \, 0.43$
$\displaystyle 0.45 \, and \, (0.8)^2 \, = \, 0.64$
$\displaystyle \therefore$ Least number is 0.43
$\displaystyle = \, \sqrt{\frac{9}{49}}$

If $a=3567, b=10, c=100, d=1000$ & $e=10000$ then $\frac{a}{b}+\frac{a}{c}-\frac{a}{d}+\frac{a}{e}$ is less than

  1. $3.962937$

  2. $3962.937$

  3. $39.62937$

  4. $39629.37$


Correct Option: B,D
Explanation:

Given, a=3567, b=10, c=10, d=1000, e=10000
$\frac{a}{b}+\frac{a}{c}-\frac{a}{d}+\frac{a}{e}$put the values a, b, c, d , e
in the above expression, we get
$=356.7+35.67-3.567+0.3597$
$=389.1597$

For $a = 4$, it is known that the value of the fraction $\dfrac{(a+2)x + a^2-1}{ax-2a +18}$ is independent of $x$. The other values of a for which this is the case, belong to the interval 

  1. $[-\infty, -2]$

  2. $[-2, 0]$

  3. $[0, 2]$

  4. $[2, 4]$

  5. $[4, +\infty]$


Correct Option: A
Explanation:

$\cfrac { \left( a+2 \right) x+{ a }^{ 2 }-1 }{ ax-2a+18 } $ is independent of x.

$\cfrac { a+2 }{ a } =\cfrac { { a }^{ 2 }-1 }{ 18-2a } \ 18a+36-2{ a }^{ 2 }-4a={ a }^{ 3 }-a\ { a }^{ 3 }+2{ a }^{ 2 }-15a-36=0\ { a }^{ 3 }-4{ a }^{ 2 }+6{ a }^{ 2 }-24a+9a-36=0\ (a-4)({ a }^{ 2 }+6a+9)=0\ \therefore a=-3,-3$ 
Other values of a belongs to $(-\infty ,-2]$

If $a=1\frac{3}{4}$ and $b=1\frac{2}{3}$ then the false statement is

  1. $\frac{a}{b}=\frac{b}{a}$

  2. $a\div b \neq b \div a$

  3. $a\times b=b\times a$

  4. $a\div b=ab$


Correct Option: A,D
Explanation:

$\frac{a}{b}=\frac{\frac{7}{4}}{\frac{5}{3}}$
$=\frac{21}{20}$

$\frac{b}{a}=\frac{\frac{5}{3}}{\frac{7}{4}}$
$=\frac{20}{21}$

Now check all the options