Tag: part number

Questions Related to part number

Divide $\dfrac35$ by $4$.

  1. $\dfrac{12}5$

  2. $\dfrac3{20}$

  3. $\dfrac{12}{20}$

  4. $\dfrac35$


Correct Option: B
Explanation:
According to problem

$ \dfrac{3}{5}  \div 4$

$  = \dfrac{3}{5} \times \dfrac14$

$=  \dfrac3{20} $

So option $B $ is correct

Divide $\dfrac{25}{36}$ by $5$.

  1. $\dfrac{5}{6}$

  2. $\dfrac{25}{6}$

  3. $\dfrac{5}{36}$

  4. $\dfrac{36}{5}$


Correct Option: C
Explanation:

Given that 

divide $\dfrac{25}{36} $ by $5$, writing the expression

$\dfrac{25}{36}  \div 5$

$ = \dfrac{25}{36}  \times  \dfrac15$

$ = \dfrac{5}{36}  $

So option $C $ is correct

Divide $\dfrac45$ by $2$.

  1. $\dfrac25$

  2. $\dfrac15$

  3. $\dfrac85$

  4. None of these


Correct Option: A
Explanation:

$\dfrac{4}{5} \div 2 = \dfrac{\dfrac{4}{5}}{2} = \dfrac{4}{10}$


On simplifying, dividing numerator and denominator by $2$, we get $\dfrac{2}{5}$

If we divide $1$ by a fraction $x$, we get ______ $x$.

  1. same fraction as

  2. reciprocal of

  3. double of

  4. half of


Correct Option: B
Explanation:

Every number has a reciprocal except 0 $(\dfrac{1}{0}$ is undefined$)$. The reciprocal is shown as $\dfrac{1}{x}$. 


When we multiply a number by its reciprocal we get $1$

$\Rightarrow$ If we divide $1$ by $x$, we get reciprocal of $x$.

Divide $10$ by $\dfrac{20}{19}$.

  1. $\dfrac{19}{2}$

  2. $\dfrac{1}{20}$

  3. $\dfrac{19}{20}$

  4. $\dfrac{9}{2}$


Correct Option: A
Explanation:
According to problem
$10$   $\div \dfrac{20}{19}$

$  = 10 \times \dfrac{19}{20}$
$=  \dfrac{19}2 $

Simplify the following:
$\dfrac {3}{8} \div \dfrac {24}{48} =\dfrac{3}{4}$

  1. True

  2. False


Correct Option: A
Explanation:
$\dfrac{3}{8} \div \dfrac{{24}}{{48}} = \dfrac{3}{8} \times \dfrac{{48}}{{24}} = \dfrac{3}{4}$
Hence, the simplification is true.

Divide the sum of $\displaystyle\frac{65}{12}$ and $\displaystyle\frac{12}{7}$ by their difference.

  1. $\displaystyle\frac{599}{311}$

  2. $\displaystyle\frac{680}{216}$

  3. $\displaystyle\frac{642}{133}$

  4. $\displaystyle\frac{501}{301}$


Correct Option: A
Explanation:

sum of $\dfrac{65}{12}$  and $\dfrac{12}{7} $


$ \dfrac{65}{12} +\dfrac {12}{7}= \dfrac{65\times 7 +12\times 12}{12\times 7} $

                  $=\dfrac{599}{84}$ ......................(1)

difference of  $\dfrac{65}{12}$  and $\dfrac{12}{7} $

$\dfrac{65}{12}-\dfrac{12}{7} = \dfrac{65\times 7 - 12\times 12}{84}= \dfrac{311}{84} $

                  $ =\dfrac{311}{84} $.........................(2)

divide the sum with difference i.e.

dividing equation (1) with equation (2)

$=\dfrac{\dfrac{599}{84}}{\dfrac{311}{84}}$

$=\dfrac{599}{311}$

Divide $\dfrac{15}{38}$ by $\dfrac{-3}{19}$

  1. $\dfrac{-2}{5}$

  2. $\dfrac{-5}{2}$

  3. $\dfrac{2}{5}$

  4. $\dfrac{5}{2}$


Correct Option: B
Explanation:
$\dfrac{15}{38} \div \dfrac{-3}{19}$

$=\dfrac{15\times19}{38 \times -3}$

$=\dfrac{-5}{2}$

$\left(\large{\frac{-5}{3}}\right)^5$ $\div$ $\left(\large{\frac{-5}{3}}\right)^{7}$

  1. $\large{\frac{25}{9}}$

  2. $\large{\frac{9}{25}}$

  3. $\large{\frac{16}{25}}$

  4. $\large{\frac{25}{16}}$


Correct Option: B
Explanation:

$\left(\large{\frac{-5}{3}}\right)^5$ $\div$ $\left(\large{\frac{-5}{3}}\right)^{7}$


$=-\left(\large{\frac{5}{3}}\right)^5$ $\times$ $-\left(\large{\frac{3}{5}}\right)^{7}$


$=\left(\dfrac{3}{5}\right)^2$

$=\dfrac{9}{25}$.

Evaluate: $\dfrac {\left(\dfrac {-3}{5}\right)^{3} \times \left(\dfrac {9}{25}\right)^{2} \times \left(\dfrac {-18}{125}\right)^{o}}{\left(\dfrac {-27}{125}\right) \times \left(\dfrac {-3}{5}\right)}$

  1. $\dfrac{27}{125}$

  2. $-\dfrac{27}{125}$

  3. $\dfrac{64}{125}$

  4. $-\dfrac{64}{125}$


Correct Option: B
Explanation:

$\dfrac {\left(\dfrac {-3}{5}\right)^{3} \times \left(\dfrac {9}{25}\right)^{2} \times \left(\dfrac {-18}{125}\right)^{0}}{\left(\dfrac {-27}{125}\right) \times \left(\dfrac {-3}{5}\right)}=\dfrac{\dfrac{-3^3\times 3^4\times 1}{5^3\times 5^4\times 1}}{\dfrac{3^3\times 3}{5^3\times 5}}=-\dfrac{3^{7-4}}{5^{7-4}}=-\dfrac{27}{125}$