Tag: power of 10

Questions Related to power of 10

The scientific notation of $923.4$ is

  1. $9.234\times { 10 }^{ -2 }$

  2. $9.234\times { 10 }^{ 2 }$

  3. $9.234\times { 10 }^{ 3 }$

  4. $9.234\times { 10 }^{ -3 }$


Correct Option: B
Explanation:

$923.4 = 9.234 \times 100$


In scientific notation, $923.4 = 9.234 \times 10^{2}$

The scientific notation of $0.00036$ is

  1. $3.6\times { 10 }^{ -3 }$

  2. $3.6\times { 10 }^{ 3 }$

  3. $3.6\times { 10 }^{ -4 }$

  4. $3.6\times { 10 }^{ 4 }$


Correct Option: C
Explanation:

$0.00036 = \dfrac{36}{10000} = 36\times10^{-5}$


$\therefore$ Scientific notation $= 3.6 \times 10^{-4}$

The decimal form of $2.57\times { 10 }^{ 3 }$ is

  1. $257$

  2. $2570$

  3. $25700$

  4. $257000$


Correct Option: B
Explanation:

$2.57 \times 10^{3} = 2.57 \times 1000 = 2570$

$\therefore$ answer is $2570$.

The decimal form of $3.506\times { 10 }^{ -2 }$ is

  1. $0.03506$

  2. $0.003506$

  3. $35.06$

  4. $350.6$


Correct Option: A
Explanation:

$3.506 \times 10^{-2} = \dfrac{3.506}{100} = 0.03506$


$\therefore$ answer is $0.03506$

State the following statement is True or False
$9.954\times 10^4$ can be written as $9954$

  1. True

  2. False


Correct Option: B
Explanation:
$9.954\times 10^4$ can be written as 
$9.954\times 10000=99540$
Thus statement is false as $9.954\times 10^4$ is not equal to $9954$.

State whether true or false
Charge of an electron is 0.000,000,000,000,000,000,16 coulomb is equal to $1.6\times10^{-19}$ coulomb.

  1. True

  2. False


Correct Option: A
Explanation:

$0.000,000,000,000,000,000,16 = \dfrac{1.6}{10000000000000000000}$ = $1.6\times10^{-19}$

In scientific notation, the numbers to the left and right to the decimal point are known as __________ and ________ respectively.

  1. Coefficient, Mantissa

  2. Mantissa, Coefficient

  3. Standard form, Scientific form

  4. Scientific form, Standard form


Correct Option: A
Explanation:

Take example $7.495$

In scientific notation the number present left to decimal point is called $coefficient$ and the number present right to decimal point is $Mantissa$ 

The digit in the ten's place of a two-digit number is three times that in the one's places if the digits are reversed the new number will be 36 less than the original number Find the number 

  1. 64

  2. 52

  3. 62

  4. 42


Correct Option: C
Explanation:

Let the digits be $ x $ and $ y $
Given, "The digit in the ten's place of a two-digit number is three times that in the one's places "
$ => x = 3y $ 

Now, when the digits are reversed, the number will be $ 10y + x $
Also,  if the digits are reversed the new number will be $ 36 $ less than the original number. $ => 10y + x = (10x + y) - 36 $
$ => 9x -9y = 36 $

Putting $ x = 3y $ in this,
$ 9(3y) -9y = 36 $
$ => 27y - 9y = 36 $
$ 18y = 36 => y = 2 $

So, $ x = 3y = 6 $
Hence, the number is $ 62 $

Express $2.53\times 10^{-4}$ in standard notation

  1. $2.53$

  2. $0.0000253$

  3. $0.00253$

  4. $0.000253$


Correct Option: D
Explanation:

$2.53\times { 10 }^{ -4 }=\frac { 2.53 }{ { 10 }^{ 4 } } =0.000253$

So correct answer will be option D

Convert $62000+39000$ to scietific form.

  1. $1.01\times 10^5$

  2. $1.1\times 10^5$

  3. $1.01\times 10^4$

  4. $1.1\times 10^4$


Correct Option: A
Explanation:

On adding, we get

$62000+39000=101000$
Therefore, $ 101000=1.01\times 10^5$
Hence, option A is correct.