Tag: power of 10

Questions Related to power of 10

If $x$ is a positive integer satisfying $x^7=k$ and $x^9=m$, which of the following must be equal to $x^{11}$?

  1. $\cfrac{m^2}{k}$

  2. $m^2-k$

  3. $m^2-7$

  4. $2k-\cfrac{m}{3}$

  5. $k+4$


Correct Option: A
Explanation:
Given, $x^7=k, x^9=m$
$x^{11}=\dfrac{x^{18}}{x^{7}}$ 
Put the given values, we get
$x^{11}=\dfrac{m^{2}}{k}$

If $n$ and $k$ are positive integers and $8^n=2^k$, what is the value of $\dfrac{n}{k}$?

  1. $\dfrac{1}{4}$

  2. $\dfrac{1}{3}$

  3. $\dfrac{1}{2}$

  4. $3$


Correct Option: B
Explanation:

Given 

${8}^{n}$ $=$ ${2}^{k}$
As $'8'$ can be written as $'$${2}^{3}$$'$,
${({2}^{3})}^{n}$ $=$ ${2}^{k}$
${2}^{3 \space \times \space n}$ $=$ ${2}^{k}$
${2}^{3n}$ $=$ ${2}^{k}$
Equating the exponents as the bases are same, we get
$3n$ $=$ $k$
Rearranging the terms, we get
$\dfrac {n}{k}$ $=$ $\dfrac {1}{3}$
Therefore, the value of $\dfrac {n}{k}=\dfrac {1}{3}$.

If $7^n\times 7^3 = 7^{12}$, what is the value of $n$?

  1. $2$

  2. $4$

  3. $9$

  4. $15$

  5. $36$


Correct Option: C
Explanation:

Given, ${7}^{n}$ $\times$ ${7}^{3}$ $=$ ${7}^{12}$

Rearranging terms, we get
${7}^{n}$ $=$ $\dfrac {{7}^{12}}{{7}^{3}}$
We know that
$\dfrac {{x}^{a}}{{x}^{b}}$ $=$ ${x}^{a \space - \space b}$
Hence, ${7}^{n}$ $=$ ${7}^{12 \space - \space 3}$
$\therefore {7}^{n}$ $=$ ${7}^{9}$
Again rearranging terms, we get
$n$ $=$ $\log _{7}{{7}^{9}}$
We know that
$\log _{x}{{x}^{a}}$ $=$ $a$$\log _{x}{x}$ and $\log _{x}{x}$ $=$ $1$
Hence, $n$ $=$ $9$$\log _{7}{7}$
$\therefore n$ $=$ $9$ $\times$ $1$
$\therefore n$ $=$ $9$
Therefore, the value of $'n'$ is $'9'$.

Which of the following has the greatest value?

  1. $(6^{2} \times 6)^{4}$

  2. $(36)^{5}$

  3. $(36^{2} \times 6^{3})^{2}$

  4. $(216)^{4}$

  5. $(6^{4})^{4}$


Correct Option: E
Explanation:

  1. ${ ({ 6 }^{ 2 }\times 6) }^{ 4 }={ { (6 }^{ 3 }) }^{ 4 }={ 6 }^{ 12 }$
  2. ${ 36 }^{ 5 }={ ({ 6 }^{ 2 }) }^{ 5 }={ 6 }^{ 10 }$
  3. ${ ({ 36 }^{ 2 }\times { 6 }^{ 3 }) }^{ 2 }={ ({ 6 }^{ 4 }\times { 6 }^{ 3 }) }^{ 2 }={ ({ 6 }^{ 7 }) }^{ 2 }={ 6 }^{ 14 }$
  4. ${ 216 }^{ 4 }={ ({ 6 }^{ 3 }) }^{ 4 }={ 6 }^{ 12 }$
  5. ${ ({ 6 }^{ 4 }) }^{ 4 }={ 6 }^{ 16 }$
  • Therefore option $E$ has maximum value

If $3^{n} = n^{6}$, find the value of $ n^{18} $

  1. $3^{n} n^{3}$

  2. $3^{n} n^{12}$

  3. $9^{n}$

  4. $3^{12n}$


Correct Option: B
Explanation:
Given, $3^n=n^6$
We need to find the value of $n^{18}$
$\therefore {n}^{18}= n^6. n^{12}=3^n.n^{12}$
$\therefore n^{6+12}=3^n. n^{12}$
$\therefore n^{18}= {3}^{n}{n}^{12}$

If $64^{x} = 4^{x^{2} - 4}$, then find the value of $x$.

  1. $x = 4$ or $x = -1$

  2. $x = -4$ or $x = 1$

  3. $x = 10$

  4. $x = \sqrt {20}$

  5. $x = 3$


Correct Option: A
Explanation:
  • ${ 64 }^{ x }={ 4 }^{ 3x }={ 4 }^{ { x }^{ 2 }-4 }$ , by equating powers , we get,
  • ${ x }^{ 2 }-4 = 3x$ , which implies ${ x }^{ 2 }-3x-4 = 0$
  • $\Rightarrow x^2-4x+x-4=0$
  • $\Rightarrow x(x-4)+1(x-4)= 0 $
  • $\Rightarrow (x-4)(x+1)=0$
  • The roots are $x=4,-1$

If $2^{3x - 2} = 16$, then calculate the value of $x $.

  1. $\dfrac {1}{2}$

  2. $1$

  3. $2$

  4. $\dfrac {3}{2}$


Correct Option: C
Explanation:

Given, ${ 2 }^{ 3x-2 }=16$
$\Rightarrow { 2 }^{ 3x-2 }=16={ 2 }^{ 4 }$

As bases are equal, there powers must be equal.
$\therefore 3x-2=4$
$\therefore 3x=6$
$\therefore x=2$

Place the following list of numbers with the given labels in order of greatest to least.
$F={({10}^{10})}^{10}$


$G={10}^{10}$ ${10}^{10}$

$H=\cfrac{{10}^{100}}{{10}^{10}}$

$I=100$

  1. $F,G,H,I$

  2. $G,F,H,I$

  3. $F,H,G,I$

  4. $H,F,G,I$


Correct Option: C
Explanation:

$F={({10}^{10})}^{10}=10^{10\times 10}=10^{100}$


$G={10}^{10}$ ${10}^{10}=10^{10+10}=10^{20}$

$H=\cfrac{{10}^{100}}{{10}^{10}}=10^{100-10}=10^{90}$

$I=100$

Clearly $F>H>G>I$

If $5^{k^2}(25^{2k})(625) = 25\sqrt{5}$ and $k < -1$, find the value of $k$.

  1. $-3.581$

  2. $-3.162$

  3. $-2.613$

  4. $-1.581$

  5. $-0.419$


Correct Option: A
Explanation:

Given, ${ 5 }^{ { k }^{ 2 } }({ 25 }^{ 2k })(625)=25\sqrt { 5 } $
${ 5 }^{ { k }^{ 2 }+4k+4 }={ 5 }^{ \tfrac 52 }$ 

By comparing powers, we get
${ k }^{ 2 }+4k+4=\cfrac 52$ which implies ${ 2k }^{ 2 }+8k+3=0$
$\Rightarrow k = -3.581$           ...(given $k<-1$)

Standard form of $900000000 + 800000 + 50000 + 3000 + 20 + 3$ is

  1. $90,00,85,323$

  2. $9,85,03,023$

  3. $90,08,53,023$

  4. $9,85,323$


Correct Option: C
Explanation:

Standard form of $900000000 + 800000 + 50000 + 3000 + 20 + 3 = 90,08,53,023$
$\therefore$ Option C is correct.