Tag: the plane

Questions Related to the plane

Equation of the plane bisecting the angle between the planes $2x-y+2z+3=0$ and $3x-2y+6z+8=0$

  1. $5x-y-4z-45=0$

  2. $5x-y-4z-3=0$

  3. $23x+13y+32z-45=0$

  4. $23x-13y+32z+5=0$


Correct Option: B
Explanation:

The equation of bisector is,
$\dfrac{2x-y+2z+3}{\sqrt{2^2+1^2+2^2})} = \pm \dfrac{3x-2y+6z+8}{\sqrt{3^2+2^2+6^2}}$
$\Rightarrow 7(2x-y+2z+3) = \pm 3(3x-2y+6z+8)$
$\Rightarrow 5x-y-4z-3=0$ or $23x-13y+32z+45=0$
Hence, option 'B' is correct.

Let two planes $p _{1}:2x-y+z=2$, and $p _{2}:x+2y-z=3$ are given. The equation of the acute angle bisector of planes $P _{1}$ and $P _{2}$ is

  1. $x-3y+2z+1=0$

  2. $3x+y-5=0$

  3. $x+3y-2z+1=0$

  4. $3x +z+7=0$


Correct Option: B
Explanation:

Given, $2x-y+z=2$    ...$(i)$

and $x+2y-z=3$    ...$(ii)$

$\therefore$  Equation of the planes bisecting the angles between them are. $\displaystyle\dfrac { 2x-y+z-2 }{ \sqrt { 4+1+1 }  } =\pm \dfrac { x+2y-z-3 }{ \sqrt { 1+4+1 }  } $

$\Rightarrow 2x-y+z-2=\pm x+2y-z-3$  ...$(iii)$

and $3x+y-5=0$    ...$(iv)$

If $\theta $ be the angle between the plane $(iv)$ and $(ii)$, we have $\displaystyle\cos { \theta =\dfrac { 1\left( 3 \right) +2\left( 1 \right) -2\left( 0 \right)  }{ \sqrt { 1+4+1 } \quad \quad \sqrt { 9+1+25 }  }  } =\dfrac { 5 }{ \sqrt { 210 }  } $

$\displaystyle\Rightarrow \tan { \theta =\dfrac { 5 }{ \sqrt { 185 }  }  } <1$

$\therefore \quad \theta <{ 45 }^{ o }$

Hence, equation of the acute angle of bisects is $3x+y-5=0$.

Two planes are prependicular  to one another. One of them contains vector $\vec{a}, \vec{b}$ and the other contains $\vec{c}, \vec{d}$ then $(\vec{a} \times \vec{b}) . (\vec{c}\times \vec{d}) = $

  1. $1$

  2. $0$

  3. $[\vec{a}   \vec{b}    \vec{c} ]$

  4. $[ \vec{b}    \vec{c}    \vec{d} ]$


Correct Option: B
Explanation:

Let plane $P$, contains $a,b$ vector
$\vec{n} _{1}=\ \vec{a}\times \vec{b}$
Plane $P _{2}$ contain $\vec{c},\vec{d}$ vector
$\vec{n} _{2}=\vec{c}\times \vec{d}$
If $ P _{1}\perp P _{2}$ than $ n _{1}\perp\ n _{2}$
$(\vec{a}\times \vec{b}).(\vec{c}\times \vec{d})=0$

Tetrahedron has Vertices at $O(0,0,0)$ , $A(1,2, 1)$ , $B(2,1,3)$ , $C(-1,1,2)$ . Then the angle between the faces $OAB$ and $ABC$ will be

  1. $\cos^{-1} (\dfrac{19}{35})$


  2. $\cos^{-1} (\dfrac{17}{31})$

  3. $30^{0}$

  4. $90^{0}$


Correct Option: A
Explanation:

$n _{1}= \overrightarrow{OA}\times \overrightarrow{OB}= \begin{vmatrix}\hat{i} &\hat{j}  &\hat{k} \1  &2  &1 \2  &1  &3 \end{vmatrix}= 5\hat{i}-\hat{j}-3\hat{k}$


$n _{2}=\overrightarrow{AB}\times \overrightarrow{AC}= \begin{vmatrix}\hat{i} &\hat{j}  &\hat{k} \1  &-1  &2 \-2  &-1  &1 \end{vmatrix}= \hat{i}-5\hat{j}-3\hat{k}$

$\cos \theta = \dfrac{\vec n _{1}-\vec n _{2}}{\left | n _{1} \right |\left | n _{2} \right |}$

$\theta = \cos^{-1}\left ( \dfrac{19}{35} \right )$

Consider the planes $3x-6y+2z+5=0$ and $4x-12y+3z=3$. The plane $67x-162y+47z+44=0$ bisects the angle between the given planes which-

  1. Contains origin

  2. Is acute

  3. Is obtuse

  4. None of these


Correct Option: A,B
Explanation:

For $3x-6y+2z+5=0$ and $-4x+12y-3z+3=0$ bisector are
$\displaystyle \frac { 3x-6y+2z+5 }{ \sqrt { 9+36+4 }  } =\pm \frac { -4x+12y-3z+3 }{ \sqrt { 16+144+9 }  } $
The plane which bisects the angle between the plane that contains the origin
$13\left( 3x-6y+2z+5 \right) =7\left( -4x+12y-3z+3 \right) \ \Rightarrow 67x-162y+47z+44=0$
Further $3\times \left( -4 \right) +\left( -6 \right) \times 12+2\times \left( -3 \right) <0$
Hence, the origin lies in the acute angle.

Angle between planes $2x-y+z$ $=$ $6$ and $x+y+2z$ $=$ $7,$ is -

  1. $\dfrac { \pi }{ 4 } $

  2. $\dfrac { \pi }{ 2 } $

  3. $\dfrac { \pi }{ 3 } $

  4. $\dfrac {- \pi }{ 4 } $


Correct Option: C
Explanation:
Plane $1$: $2x-y+z=6$
normal vector is $\bar{n _1}=2\hat{i}-\hat{j}+\hat{k}$
Plane $2$: $x+y+2z=7$
normal vector is $\bar{n _2}=\hat{i}+\hat{j}+2\hat{k}$
Angle between planes is same as the angle between their normal.
$\Rightarrow \cos\theta =\dfrac{\bar{n _1}\cdot\bar{n _2}}{|\bar{n _1}||\bar{n _2}|}$
$=\dfrac{(2\hat{i}-\hat{j}+\hat{k})\cdot(\hat{i}+\hat{j}+2\hat{k})}{(\sqrt{4+1+1})\sqrt{1+1+4}}$
$=\left|\dfrac{2-1+2}{\sqrt{6}\cdot \sqrt{6}}\right|$
$=\dfrac{3}{6}$
$=\dfrac{1}{2}$
$\Rightarrow \cos\theta =\dfrac{1}{2}$
$\Rightarrow \theta =\dfrac{2}{3}$.

The equation of the plane bisecting the angle between the planes $\displaystyle 3x +4y = 4$ and $\displaystyle 6x - 2y + 3z + 5 = 0$ that contains the origin, is

  1. $\displaystyle 9x - 38y + 15z + 43 = 0$

  2. $\displaystyle 51x + 18y + 15z = 3$

  3. $\displaystyle 9x + 2y + 3z + 1 = 0$

  4. $\displaystyle 17x + 9y + 15z = 26$


Correct Option: B
Explanation:
Equation of given planes can be written as
 $3x+4y=4 , 6x−2y+3z+5=0$

formula is
  $\dfrac {a _1x+b _1y+c _1z+d _1}{\sqrt {a _1^2+b _1^2+c _1^2}}$ = +  or  - $\dfrac {a _2x+b _2y+c _2z+d _2}{\sqrt {a _2^2+b _2^2+c _2^2}}$

by substituting the values in the given formula we will get 

$\dfrac {3x+4y+0z+-41}{\sqrt {3^2+4^2+0^2}}$ = + or - $\dfrac {6x+-2y+3z+5}{\sqrt {6^2+(-2)^2+3^2}}$

$\Rightarrow$ $21x+28y-28 = +\  or\  - 30x-10y+160+25$

so when adding the above equation we will get $51x + 18y + 160z - 3 = 0$

is the plane bisecting the angle containing the origin, and when subtracting we will get $9x - 38y + 160z + 53 = 0$ is the other bisecting plane.

Hence the plane $51x + 18y + 160z - 3 = 0\  or\  51x + 18y + 160z  = 3$ bisects the acute angle and therefore origin lies in the acute angle.

The equation of the plane bisecting the obtuse angle between the planes $\displaystyle x+y+z= 1$ and $\displaystyle x+2y-4z= 5$ is

  1. $\displaystyle \left ( \sqrt{7}-1 \right )x+\left ( \sqrt{7}-2 \right )y+\left ( \sqrt{7}+4 \right )z+5-\sqrt{7}= 0$

  2. $\displaystyle \left ( \sqrt{7}+1 \right )x+\left ( \sqrt{7}+2 \right )y+\left ( \sqrt{7}+4 \right )z+5-\sqrt{7}= 0$

  3. $\displaystyle \left ( \sqrt{7}+1 \right )x+\left ( \sqrt{7}+2 \right )y+\left ( \sqrt{7}-4 \right )z=\sqrt{7}$

  4. None of these


Correct Option: D
Explanation:

Given planes are  $ x+y+z-1=0.....(1)$ and $x+2y-4z-5=0.........(2)$
Therefore equation of planes bisecting these planes are
$\dfrac{x+y+z-1}{\sqrt{3}}=\pm\dfrac{x+2y-4z-5}{\sqrt{21}}$

$\Rightarrow x+y+z-1=\pm\dfrac{x+2y-4z-5}{\sqrt{7}}$

$\Rightarrow (\sqrt{7}-1) x+(\sqrt{7}-2)y+(\sqrt{7}+4)z = \sqrt{7}+5 ...(3)$ and $(\sqrt{7}+1) x+(\sqrt{7}+2)y+(\sqrt{7}-4)z = \sqrt{7}-5  ....(4)$
If $\theta$ is the angle between $(1)$ and $(3)$, then

$  \cos\theta = \dfrac{(\sqrt{7}-1).1+(\sqrt{7}-2).1+(\sqrt{7}+4).1}{(\sqrt{(\sqrt{7}-1)^2+(\sqrt{7}-2)^2+(\sqrt{7}+4)^2}).(\sqrt{3})}= \dfrac{3\sqrt{7}+2}{(\sqrt{40+2\sqrt{7}}).(\sqrt{3})}> \dfrac{1}{2}$

$\Rightarrow \theta > 45^\circ$
Hence, plane $(1)$ bisects the obtuse angle between the given planes.
Therefore equation of plane bisecting acute angle  between given plane is
$(\sqrt{7}-1) x+(\sqrt{7}-2)y+(\sqrt{7}+4)z = \sqrt{7}+5 $

Hence, option 'D' is correct.

Let two planes $p _{1}:2x-y+z=2$, and $p _{2}:x+2y-z=3$ are given. The equation of the bisector of angle of the planes  $P _{1}$ and $P _{2}$ which does not contains origin, is

  1. $x-3y+2z+1=0$

  2. $x+3y=5$

  3. $x+3y+2z+2=0$

  4. $3x+y=5$


Correct Option: D
Explanation:
Given planes are $p _{1}:2x-y+z=2$ and $p _{2}:x+2y-z=3$

Normals to the planes
$N _1:\dfrac{1}{\sqrt{6}}(2,-1,1)$
$N _2:\dfrac{1}{\sqrt{6}}(1,2,-1)$

Let $N$ be the normal vector of angle bisector
$N=  N _1+N _2$ or $ N _1-N _2$
$N = (3,1,0)$ or $(1,-3,2)$

The equation of plane is
$P = P _1+ \lambda P _2$
$P= 2x-y+z-2 + \lambda (x+2y-z -3) $

If $N = (3,1,0)$, then $\lambda = 1$,
Equation of Plane $=  P = 3x+y- 5$
It does not pass through origin.

Hence, option D is correct.