Tag: differencial calculus - limits and continuity
Questions Related to differencial calculus - limits and continuity
Let $f\left( x \right) =\dfrac { \log { \left( 1+x+{ x }^{ 2 } \right) } +\log { \left( 1-x+{ x }^{ 2 } \right) } }{ \sec { x } -\cos { x } } ,x\neq 0$ The value of $f\left (0\right)$ so that $f$ is continuous at $x=0$ is
Given $f(x)=\dfrac{\left[ \left{ \left| x \right| \right} \right] { e }^{ { x }^{ 2 } }\left{ \left[ \left| x+\left{ x \right} \right| \right] \right} }{\left( { e }^{ 1/{ x }^{ 2 } }-1 \right) sgn\left( \sin { x } \right) }$ for $x\neq 0$
$=0, for\ x=0$
Where $\left{ x \right} $ is the fractional part function; $[x]$ is the step up function and $sgn{(x)}$ is the signum function of $x$ then, $f(x)$
Given that $\displaystyle \prod _{n=1}^n cos \dfrac{x}{2^n}= \dfrac{\sin x}{2^n \sin \left ( \dfrac{x}{2^n} \right )}$ and $\displaystyle f(x) = \left{\begin{matrix}\lim _{n \rightarrow \infty}\sum _{n = 1}^n \dfrac{1}{2^n} \tan \left (\dfrac{x}{2^n} \right ), & x \in (0, \pi) - \left {\dfrac{\pi}{2} \right }\ \dfrac{2}{\pi} & x = \dfrac{\pi}{2}\end{matrix}\right.$
Then which one of the following is true?
The value of f(0) so that the function
$f(x)=\displaystyle \frac{\sqrt{1+x}-\sqrt[3]{1+x}}{x}$
becomes continuous, is equal to
Let $\displaystyle f(x)=\left ( 2-\dfrac{x}{a} \right )^{\tan \left ( \dfrac{\pi :x }{2:a} \right )}, x\neq a$. The value which should be assigned to $f$ at $x=a$ so that it is continuous everywhere is
If $f(x)=\left{\begin{matrix} |x|-3, & x < 1\ |x-2|+a, & x\geq 1\end{matrix}\right.$ and $g(x)=\left{\begin{matrix} 2-|x|, & x < 2 \ sgn(x)-b, & x\geq 2\end{matrix}\right.$ and $h(x)=f(x)+g(x)$ is discontinuous at exactly one point, then which of the following values of a and b are possible.
- ← Previous
- 1
- 2
- 3
- Next →