Tag: differencial calculus - limits and continuity
Questions Related to differencial calculus - limits and continuity
If $f(x)=\dfrac{1}{1-x}$, the number of points of discontinuity of $f\left{f[f(x)]\right}$ is:
Consider $f ( x ) = \sin x \forall x \in \left[ 0 , \dfrac { \pi } { 2 } \right] ; f ( x ) + f ( \pi - x ) =2 \forall x \in \left( \dfrac { \pi } { 2 } , \pi \right) \text { and } f ( x ) = f ( 2 \pi - x ) \forall x \in ( \pi , 2 \pi ) . \text { If } n , m$ denotes number of points where $f(x)$ is discontinuous and non derivable respectively in $[ 0,2 \pi ]$ then value of $n \div m$ is
f(x) = $\dfrac{\sin2x + 1}{\sin x - \cos x}$ is discontinuous at $x =$ ____________.
The function $\displaystyle f\left ( x \right )=\frac{\log \left ( 1+ax \right )-\log \left ( 1-bx \right )}{x}$ is not defined at $ x = 0$. The value which should be assigned to $f$ at $x =0$ so that it is continuous there, is
The function
$\displaystyle f\left ( x \right )=\frac{\cos x-\sin x}{\cos 2x}$ is not defined at $\displaystyle x=\frac{\pi }{4}$. The value of $\displaystyle f\left ( \frac{\pi }{4}\right )$ so that $ f\left ( x \right)$ is continuous everywhere, is
$\displaystyle g(x)= \begin{cases}1 & \, x\leq -2 \ \displaystyle \frac{1}{2} x& \, -2< x< 4 \ \sqrt{x} & , x\geq 4 \end{cases}$.then
Given $\displaystyle f(x) = \begin{cases} 3-\left [ \cot ^{-1}\left ( \frac{2x^{3}-3}{x^{2}} \right ) \right ] & \mbox{for } x> 0 \ \left { x^{2} \right }\cos \left ( e^{1/x} \right ) & \mbox{for } x< 0 \end{cases}$ where { } & [ ] denotes the fractional part and the integral part functions respectively, then which of the following statement does not hold good -
Consider $\displaystyle f(x) = \begin{cases} x\left [ x \right ]^{2}\log _{(1+x)}2& \mbox{ for } -1< x< 0 \ \dfrac{\ln e^{x^{2}}+2\sqrt{\left { x \right }}}{\tan \sqrt{x}} & \mbox{ for } 0< x< 1 \end{cases}$ where [] & {} are the greatest integer function & fractional part function respectively, then -
Let $f(x)=\begin{cases} \dfrac{1-\cos 2x}{2x^2}&:& x\ne 0\k &:& x=0 \end{cases}$.
- ← Previous
- 1
- 2
- 3
- Next →