Tag: standardized measurement

Questions Related to standardized measurement

Which system of units has been taken as standard?

  1. M.K.S

  2. C.G.S

  3. Both

  4. None


Correct Option: A
Explanation:

In S.I system (standard international system), the units of mass,length and time are same,as that of M.K.S system. However , it is an enlarged system encompassing all fundamental units.

MKS system means

  1. Millimeter, kilometre, seconds

  2. Metre, kilogram, seconds

  3. Millisecond, kilolitre, seconds

  4. Milligram, kilogram, seconds


Correct Option: B
Explanation:

In MKS system,M stands for metre (length),K stands for kilogram(mass) and S stands for seconds(time).

Units of Planck's constant in CGS system are:

  1. Erg per second

  2. Second per erg

  3. Erg second

  4. Erg per second per second


Correct Option: C
Explanation:

Planck's constant, symbolized h, relates the energy in one quantum (photon) of electromagnetic radiation to the frequency of that radiation.  In the centimeter-gram-second (CGS) or small-unit metric system, it is equal to approximately $6.626176\times 10^{-27}\,$Erg Second.

If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of time (T) is

  1. $\left[ { W }^{ 1 }{ F }^{ 1 }{ V }^{ 1 } \right] $

  2. $\left[ { W }^{ 1 }{ F }^{ 1 }{ V }^{ -1 } \right] $

  3. $\left[ { W }^{ -1 }{ F }^{ -1 }{ V }^{ -1 } \right] $

  4. $\left[ { W }^{ 1 }{ F }^{ -1 }{ V }^{ -1 } \right] $


Correct Option: D
Explanation:
We know,

$[W]=ML^2T^{-2}$

$[F]=MLT^{-2}$

$[V]=LT^{-1}$

Let,
$W^aF^bV^c=M^0L^0T$

$a+b=0$

$2a+b+c=0$, $a+c=0$

$-2a-2b-c=1$

$c=-1,a=1,b=-1$

Hence , $[T]=[WF^{-1}V^{-1}]$

Option $\textbf D$ is the correct answer

The ratio of SI unit to CGS unit of G is

  1. $10^{3}$

  2. $10^{2}$

  3. $10^{-2}$

  4. $10^{-3}$


Correct Option: A
Explanation:
SI unit of G is  $\dfrac{N m^2}{kg^2}$.
CGS unit of G is  $\dfrac{dyne \ cm^2}{gm^2}$
We know that  $1 \ N = 10^5 \ dyne$ and $1 \ m = 10^2 \ cm$ and $1 \ kg = 10^3 \ gm$
So ratio of SI unit to CGS unit   $ = \dfrac{\dfrac{N  \ m^2}{kg^2}}{\dfrac{dyne \ cm^2}{gm^2}} = \dfrac{\dfrac{10^5 \ dyne \ (10^2 \ cm)^2}{(10^3 \ gm)^2}}{\dfrac{dyne \ cm^2}{gm^2}} = 10^3$
Correct answer is option A.

Which of the following represents the magnitude of a temperature correctly?

  1. 10 k

  2. 10 Kelvins

  3. 10 Ks

  4. 10 K


Correct Option: D
Explanation:
Temperature is measured in Kelvin which is represented by $K$
Thus, $10 \ K$ is the correct representation of temperature.

1 Newton $=$

  1. $10^4 dyne$

  2. $10^5 dyne$

  3. $10^6dyne$

  4. $10^7 dyne$


Correct Option: B
Explanation:
S.I. unit of force is Newton and CGS unit of force is done.

We know $F=ma$
so, force can be expresses in S.I. Units as $Kg m s^{-2}$
and dyne can be expressed as $gcms^{-2}$
1 Newton= $kg ms^{-2}$ 
                 =$10^3 g*10^2 cms  s^{-2}$
                 =$10^5 g cm s^{-2}$
                 =$10^5 dyne$

The SI unit of specific latent heat is 

  1. $Jkg^{-1}K^{-1}$

  2. $J^{0}K^{-1}$

  3. $J kg^{-1}$

  4. $J kgK^{-1}$


Correct Option: C
Explanation:

The specific latent heat of a substance is the quantity of heat energy required to change the state of a unit mass of a substance.

${E} _{L}= ml$

here ${E} _{L}$ is the heat transferred, in joules,m is the mass, in kilograms, and l is the latent heat in joules per kilogram.

The SI unit for specific latent heat is $J{kg}^{-1}$.

The specific heat capacity of water in SI unit is :

  1. $4.2 Jg^{-1}K^{-1}$

  2. $42 Jg^{-1}K^{-1}$

  3. $420 J kg^{-1}K^{-1}$

  4. $4200 J kg^{-1}K^{-1}$


Correct Option: D
Explanation:

The specific heat capacity  of a substance is the heat needed to raise

the temperature of 1 kg of the substance by 1K (or by ${1}^{0}C$).
The specific heat capacity of water is $4200 J{kg}^{-1}{K}^{-1}$.

The SI unit of thermal capacity is ;

  1. $J\ kg^{-1}\  K^{-1}$

  2. $J^{-1}\ kg\ K^{-1}$

  3. $JK^{-1}$

  4. $J\  kg\ K^{-1}$


Correct Option: C
Explanation:


The heat or thermal capacity of a defined system is the amount of heat required to raise the system's temperature by one degree. It is expressed in units of thermal energy per degree temperature.

$q= C\times t$

$C=\dfrac{q}{\triangle t}$

here,$C=$heat or thermal capacity
        $q=$heat required (J)
        $\triangle t={t} _{1}-{t} _{2}$ (K)

so,The S.I. unit of heat or thermal capacity is $J{K}^{-1}$