Tag: construction related to lines

Questions Related to construction related to lines

A ray of light passing through the point A$(1, 2, 3)$, strikes the plane $x + y + z = 12$ at B on reflection passes through point C$(3, 5, 9)$. The coordinates of point B are 

  1. $(2, 5, 5)$

  2. $(-4, 6, 10)$

  3. $(-7, 0, 19)$

  4. $(0, -5, 17)$


Correct Option: C
Explanation:
Let image of point $A(1,2,3)$ about $x+y+z=12$ be $D(p,q,r)$ then,
$\cfrac{p-1}{1}=\cfrac{q-2}{1}=\cfrac{r-3}{1}=-2\cfrac{1+2+3-12}{1^2+1^2+1^2} \\ D(p,q,r)=D(5,6,7) $

Line joining $CD$
$\cfrac{x-5}{2}=\cfrac{y-6}{1}=\cfrac{z-7}{-2}=\lambda$
Coordinate of $B(2\lambda+5,\lambda+6,-2\lambda+7)$
This lies on plane $2\lambda+5+\lambda+6-2\lambda+7=12 \Rightarrow \lambda=-6$
$B(2\lambda+5,\lambda+6,-2\lambda+7)=B(-7,0,19)$

What are the tools required for constructing a tangent to a circle?

  1. ruler

  2. compass

  3. pencil

  4. all the above


Correct Option: D
Explanation:

The tools required for constructing a tangent to a circle is ruler, compass and pencil.

Let C be the circle with centre at $(1, 1)$ and radius $=1$. If T is the circle centred at $(0, y)$, passing through origin and touching the circle C externally, then the radius of T is equal to?

  1. $\dfrac{\sqrt{3}}{\sqrt{2}}$

  2. $\dfrac{\sqrt{3}}{2}$

  3. $\dfrac{1}{2}$

  4. $\dfrac{1}{4}$


Correct Option: A

The sides of a triangle are $25,39$ and $40$. The diameter of the circumscribed circle is: 

  1. $\cfrac { 133 }{ 3 } $

  2. $\cfrac { 125 }{ 3 } $

  3. $42$

  4. $41$

  5. $40$


Correct Option: B
Explanation:

Circum radius formula

$R$ $=\cfrac { abc }{ \sqrt { (a+b+c)(b+c-a)(c+a-b)(a+b-c) }  }$ .
Where  $a, b, c$  are sides of triangle 
$\Rightarrow$ $R$ $=\cfrac { 25\times 39\times 40\quad  }{ \sqrt { (140\quad \times (54)\times (26)\quad \times (240) }  } $
$=\cfrac { 25\times 39\times 40\quad  }{ \sqrt { { 2 }^{ 3 } } \times 13\times 2\times { 3 }^{ 3 }\times 2\times 13\times { 2 }^{ 3 }\times 3 } $
$=\cfrac { 25\times 39\times 40\quad  }{ \sqrt { { 2 }^{ 8 } } \times { 3 }^{ 4 }\times { 13 }^{ 2 } } $.
$=\cfrac { 25 \times \ 39 \times 40  }{ { 2 }^{ 4 }\times { 3 }^{ 2 }\times { 13 } } =\quad \cfrac { 25 \times 39 \times40\quad  }{ 16\times 9\times { 13 } }$ 
$=\cfrac { 125 }{ 6 }$ 
$\therefore$   Diameter $=\cfrac { 125\times \ 2 }{ 6 } = \cfrac { 125 }{ 3 } $

$\therefore$ B) Answer.

The minimum number of dimensions needed to construct an equilateral triangle is:

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: A
Explanation:

As we know that all angles in an equilateral triangle measures $60^o$. Hence we need only the length of the side to construct an equilateral triangle.

The number of independent measurement required to construct a $\Delta$ le is 

  1. $3$

  2. $4$

  3. $2$

  4. $5$


Correct Option: A
Explanation:

Triangle has $3$ sides.
So, number of measurements required to construct a triangle is $3$.

The minimum number of dimensions needed to construct a rectangle is:

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: B
Explanation:

We can construct a rectangle when:

(i) two adjacent sides are given
(ii) one side and the diagonal is given
(iii) both diagonals are given
In the above cases the number of dimensions needed to construct a rectangle is $2$.

State True or False
There is a triangle whose sides have lengths 10.2 cm, 5.8 cm and 4.5 cm 

  1. True

  2. False


Correct Option: A
Explanation:

Suppose such a triangle is possible Then the sum of the lengths of any two side would be greater than the length of the third side  Let us check this
Is 4.5+5.8>10.2  Yes 
Is 5.8+10.2>4.5  Yes
Is 10.2+4.5>5.8  Yes
Therefore the triangle is possible

The number of independent measurements required to construct a $\Delta$ is

  1. 3

  2. 4

  3. 2

  4. 5


Correct Option: A
Explanation:

We have three measurements to construct a $\Delta$ le,