Tag: electrostatics

Questions Related to electrostatics

An electric dipole is placed in an electric field of a point charge then...........

  1. Force is always zero.

  2. Torque is always zero.

  3. Force is may be zero.

  4. Torque may be zero.


Correct Option: D

Four equal positive charges each of magnitude $q$ are placed at the respective vertices of a square of side length $l$. A point charge $Q$ is placed at the centre of the square. Then

  1. $Q$ must not be in equilibrium

  2. $Q$ must be in stable equilibrium

  3. $Q$ must be in neutral equilibrium

  4. $Q$ must be in unstable equilibrium


Correct Option: B

If we rotate the dipole of moment $p$ placed in an electric field $E$ from an $\theta _1$ to $\theta _2$, the work done by the external force is

  1. $pE(\cos \theta _2 - \cos \theta _1)$

  2. $pE(\cos \theta _1 - \cos \theta _2)$

  3. $pE(\sin \theta _2 - \sin \theta _1)$

  4. $pE(\sin \theta _1 - \sin \theta _2)$


Correct Option: B
Explanation:
Given dipole of dipole moment $p$ in an electric field $E$. It is rotated from $\theta _{1}$ to $\theta _{2}$. We have to find the work done by external force.
When a dipole of dipole moment  $p$ is placed in electric field, work done in rotated the dipole by angle $\theta$ is
$W=-pE \cos{\theta _{1}}$
Now work done in rotating dipole by $\theta _{1}$ is 
$W _{2}=-pE\cos{\theta _{2}}$
Work done in rotating the dipole from $\theta _{1}$ to $\theta _{2}$ is
$W=W _{2}-W _{1}$
$=-pE \cos{\theta _{2}}-(-pE \cos{\theta _{1}})$
$=pE(\cos{\theta _{1}}-\cos{\theta _{2}})$

An electric dipole of dipole moment $p$ is placed in a uniform electric field $E$ in stable equilibrium position. Its moment of inertia about the centroidal axis is $I$. If it is displaced slightly from its mean position find the period of small oscillations.

  1. $2\pi \sqrt{\dfrac{I}{2pE}}$

  2. $2\pi \sqrt{\dfrac{2I}{pE}}$

  3. $2\pi \sqrt{\dfrac{I}{pE}}$

  4. $\pi \sqrt{\dfrac{2I}{pE}}$


Correct Option: C
Explanation:
Dipole moment $=p$
electric field $=E$
centroid axis $=I$
Explanation
When displaced at an angle $\theta $ from its mean position the magnitude of restoring torque is $T=-psin\theta $
For small angular displacement $\sin\theta \approx \theta $
$T=-pE\theta $
$\alpha =\dfrac { T }{ I } =-\left( \dfrac { PE }{ I }  \right) \theta $
    $={ -w }^{ 2 }\theta $
${ w }^{ 2 }=\dfrac { PE }{ I } $
$T=2\pi \sqrt { \dfrac { I }{ PE }  } $
($P.E=$ moment in electric field)

In a certain region of space, electric field is along the z-direction throughout. The magnitude of electric field is, however not constant but increases uniformly along the positive z-direction at the rate ${10^5}\,V/m.$ The force and the torque experienced by a system having a total dipole moment equal to ${10^{ - 7}}C - m$ in the negative z-direction is given by respectively.

  1. 0.01,0

  2. 0.02,0

  3. 0,0.01

  4. None of the above


Correct Option: A
Explanation:

$z$ direction positive rate $={ 10 }^{ 5 }V/m$

torque $=$ M $\times$ $E$
            $={ 10 }^{ 5 }\times { 10 }^{ -7 }$
            $=0.01cm$

 An electric dipole consist of two opposite charges each of magnitude $1\mu C$ separated by a distance of $2\,cm.$ The dipole is placed in an external field of ${10^5}{\text{N/C}}$.The maximum torque on the dipole is:

  1. $2 \times {10^{ - 4}}J$

  2. $2 \times {10^{ - 3}}J$

  3. $4 \times {10^{ - 3}}J$

  4. ${10^{ - 3}}N\,m$


Correct Option: C
Explanation:
An electric dipole consist at two opposite charge each of magnitude $=1\mu C=1\times { 10 }^{ -6 }C$
distance $=2cm$
Exter field $={ 10 }^{ 5 }N/C$
maximum torque on the dipole $=?$
$q=1\times { 10 }^{ -6 }C,\quad 2a=2cm$
                                or,  $=0.02cm$
$\therefore$    $P=q\times 2a$
           $=\left( 1\times { 10 }^{ -6 } \right) \times 0.02$
           $=2\times { 10 }^{ -8 }cm$
Intensity of the external electric field, $E=1.0\times { 10 }^{ 5 }N/C$
(i) ${ Z } _{ max }=pE=\left( 2\times { 10 }^{ -8 } \right) \left( 10\times { 10 }^{ 5 } \right) =2\times { 10 }^{ -3 }N-m$
(ii) Net work done in turning the dipole from ${ 0 }^{ 0 }$ to ${ 180 }^{ 0 }$
i.e  $W=\int _{ { 0 }^{ 0 } }^{ { 180 }^{ 0 } }{ \overline { r }  } d\theta =\int _{ { 0 }^{ 0 } }^{ { 180 }^{ 0 } }{ pE\sin\theta  } d\theta $
           $=pE{ \left[ -cos\theta  \right]  } _{ { 0 }^{ 0 } }^{ { 180 }^{ 0 } }$
           $=-pE\left( { \cos180 }^{ 0 }-\cos{ 0 }^{ 0 } \right) $
           $=2pE$
           $=2\times \left( 2\times { 10 }^{ -8 } \right) \left( 1\times { 10 }^{ 5 } \right) J$
           $=4\times { 10 }^{ -3 }J$

Dielectric constant for a metal is:

  1. zero

  2. infinite

  3. 1

  4. 10


Correct Option: B
Explanation:

Permittivity of metals is very high comparable to the permittivity of free space. So dielectric constant for metal is infinite.

A parallel plate condenser of capacity $10\mu F$ is connected to an A.C. supply voltage $e = 4\sin \left( {100\pi t} \right)$. The maximum displacement current:

  1. $4\pi \mu A$

  2. $4\pi mA$

  3. $2.8\pi \mu A$

  4. $2\pi \mu A$


Correct Option: B
Explanation:

Displacement current, ${i _d} = {\varepsilon _ \circ }A\frac{{dE}}{{dt}}$
where, $A$ is area and $E$ is electric field
$\begin{array}{l}E = \frac{e}{d} = \frac{{4\sin (100\pi t)}}{d}\{i _d} = {\varepsilon _ \circ }A \times \frac{1}{d}\left[ {\frac{d}{{dt}}\left( {4\sin 100\pi t} \right)} \right]\ = \frac{{{\varepsilon _ \circ }A}}{d}.4(cos100\pi t) \times 100\pi \ = C.400\pi .cos100\pi t\{\left( {{i _d}} \right) _{\max }} = \left( {10 \times {{10}^{ - 6}}} \right) \times 400\pi A\ = 4\pi  \times {10^{ - 3}}A = 4\pi mA\end{array}$

Which of the following can be used as dielectric?

  1. Plastics

  2. Mica

  3. Porcelain

  4. All of the above


Correct Option: D
Explanation:

The dielectric is a material through which no electric current passes. Here the given materials-plastic, mica and porcelain are all the  dielectric because current can not pass through them.

Which of the following is/are non-polar dielectrics?

  1. $HCL$

  2. Water

  3. Benzene

  4. $NH _3$


Correct Option: C
Explanation:

Ammonia and $HCl$ are polar molecules since they have a net dipole moment towards a particular direction. Both water and benzene are non-polar molecules. But water is a conductor of electricity, whereas benzene is a dielectric (insulator).