Tag: degree measure of angle

Questions Related to degree measure of angle

Find the radian measure corresponding to the degree $-47^{o}30'$

  1. $\dfrac {-19\ \pi}{72}rad$

  2. $\dfrac {19\ \pi}{72}rad$

  3. $\dfrac {13\ \pi}{72}rad$

  4. $None\ of\ these$


Correct Option: A
Explanation:
$-47^{o} 30'$
$\Rightarrow - (47+ \dfrac{30}{60}) (\because 1^{o} =60')$
$\Rightarrow  -\left( 47+ \dfrac{1}{2} \right)$
$-\left( \dfrac{95}{2} \right)$
Radian measure $\Rightarrow \dfrac{\pi}{180} \times \dfrac{-95}{2}$
$\Rightarrow \pi x - \dfrac{19}{72} \Rightarrow - \dfrac{19 \pi}{72}$ radian

The value of $\tan\left(7\dfrac{1}{2}\right)^o$ is 

  1. $\dfrac {2\sqrt 2 -(1+\sqrt 3)}{\sqrt 3-1}$

  2. $\dfrac {1+\sqrt 3}{1-\sqrt 3}$

  3. $\dfrac {1}{\sqrt 3}+\sqrt 3$

  4. $\sqrt 2 +\sqrt 3$


Correct Option: A
Explanation:

$\tan\left(7\dfrac{1}{2}\right)^o=\tan\left(\dfrac{15}{2}\right)^o$


                       $=\dfrac{\sin\dfrac{15^o}{2}}{\cos\dfrac{15^o}{2}}$

                       $=\dfrac{2\sin\dfrac{15^o}{2}\times \sin\dfrac{15^o}{2}}{2\sin\dfrac{15^o}{2}\times \cos\dfrac{15^o}{2}}$

                        $=\dfrac{2\sin^2\dfrac{15^o}{2}}{\sin\left(2\times\dfrac{15^o}{2}\right)}$

                        $=\dfrac{1-\cos\left(2\times\dfrac{15^o}{2}\right)}{\sin 15^o}$

                        $=\dfrac{1-\cos 15^o}{\sin 15^o}$

Now,
$\cos 15^o=\cos(45^o-30^o)$
              $=\cos 45^o\cos30^o+\sin 45^o\sin 30^o$
              $=\dfrac{1}{\sqrt{2}}\times\dfrac{\sqrt{3}}{2}+\dfrac{1}{\sqrt{2}}\times\dfrac {1}{2}$
              $=\dfrac{\sqrt{3}+1}{2\sqrt{2}}$

$\sin 15^o=\sin(45^o-30^o)$
             $=\sin 45^o\cos30^o-\cos 45^o\sin 30^o$
             $=\dfrac{1}{\sqrt{2}}\times\dfrac{\sqrt{3}}{2}-\dfrac{1}{\sqrt{2}}\times\dfrac {1}{2}$
             $=\dfrac{\sqrt{3}-1}{2\sqrt{2}}$


$\tan\left(7\dfrac{1}{2}\right)^o=\dfrac{1-\dfrac{\sqrt{3}+1}{2\sqrt{2}}}{\dfrac{\sqrt{3}-1}{2\sqrt{2}}}$

                      $=\dfrac{2\sqrt{2}-(\sqrt{3}+1)}{\sqrt{3}-1}$