Tag: angle and their measurement

Questions Related to angle and their measurement

Find the degree measure corresponding to $\left(\dfrac{1}{6}\right)^C$.

  1. $9.549^\circ$

  2. $9^032$ $43.6"$

  3. $10^0$

  4. None


Correct Option: A
Explanation:

$\pi$ rad $=180^o$

$\therefore 1\ rad=\dfrac{180}{\pi}=57.296^o$
$\therefore (1/6)^c=1/6\times \dfrac{180}{\pi}=9.549^o$

If $\cos x=\sqrt{1-\sin2x},0\le x\le \pi$, then possible  value of $x$ is 

  1. $\pi$

  2. $0$

  3. $\tan^{-1}2$

  4. $3\pi$


Correct Option: B,C
Explanation:

$\cos { x } =\sqrt { 1-\sin { 2x }  } $; $x\in (0,\pi)$

$=\sqrt { 1-2\sin { x } .\cos { x }  } =\sqrt { \sin ^{ 2 }{ x } -2\sin { x } \cos { x } +\cos ^{ 2 }{ x }  } \left[ \because 1=\sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } ,\forall x\in R \right] $
$=\sqrt { { \left( \sin { x } -\cos { x }  \right)  }^{ 2 } } \left[ \because \sqrt { { x }^{ 2 } } =\left| x \right|  \right] $
$\cos { x } =\left| \sin { x } -\cos { x }  \right| $
case I
$\sin { x } \ge \cos { x } ,x\in \left[ 0,\pi  \right] \Rightarrow \left| \sin { x } -\cos { x }  \right| =\sin { x } -\cos { x } $
$\therefore \log { x } =\sin { x } -\cos { x } $
$\therefore \cos { x } =\sin { x } -\cos { x } \Rightarrow 2\cos { x } =\sin { x } \Leftrightarrow \tan { x } =2\Rightarrow x=\tan ^{ -1 }{ 2 } \left[ \because x\in \left[ 0,\pi  \right]  \right] $
case II
$\sin { x } <\cos { x } ;x\in \left[ 0,\pi  \right] $
$\Rightarrow \left| \sin { x } -\cos { x }  \right| =\cos { x } -\sin { x } $
$\therefore \cos { x } =\cos { x } -\sin { x } \Rightarrow \sin { x } =0\Rightarrow x=0,\pi $
but $x=\pi$ is rejected as $\cos (\pi)=-1$
$\therefore$ only $x=0$
Finally $x=\tan ^{ -1 }{ 2 } ,0$

The area of a sector of a circle of radius $7\ cm$ and central angle $120^{o}$ is 

  1. $152\ cm^{2}$

  2. $\dfrac{154}{3}\ cm^{2}$

  3. $\dfrac{128}{3}\ cm^{2}$

  4. $128\ cm^{2}$


Correct Option: B
Explanation:
Area$=\cfrac { 120 }{ 360 } \times \pi { r }^{ 2 }$
$=\cfrac { \pi  }{ 3 } \times 7\times 7=49\times \cfrac { \pi  }{ 3 } $
$=49\times \cfrac { 22 }{ 7\times 3 } =\cfrac { 154 }{ 3 }cm^2$

$\displaystyle \frac{\pi ^{c}}{5}$ in sexagesimal measure is _____

  1. $\displaystyle 18^{\circ}$

  2. $\displaystyle 36^{\circ}$

  3. $\displaystyle 54^{\circ}$

  4. $\displaystyle 72^{\circ}$


Correct Option: B
Explanation:

In $\text{Sexagesimal System}$, an angle is measured in degrees, minutes and seconds.
$ \pi = {180}^{0} $

So, $ \dfrac {\pi}{5} = \dfrac {{180}^{0}}{5} = {36}^{0}  $

The value of $\displaystyle 144^{\circ}$ in circular measure is ___ 

  1. $\displaystyle \frac{3\pi ^{c}}{4}$

  2. $\displaystyle \frac{2\pi ^{c}}{3}$

  3. $\displaystyle \frac{4\pi ^{c}}{5}$

  4. $\displaystyle \frac{5\pi ^{c}}{6}$


Correct Option: C
Explanation:

$ {144}^{0} = {144}^{0} \times \dfrac {{\pi}^{c}}{{180}^{0}} = \dfrac {4{\pi}^{c}}{5} $

Find the angle measure of $4$ radians.

  1. $114.591^{\circ}$

  2. $141.372^{\circ}$

  3. $229.183^{\circ}$

  4. $282.743^{\circ}$

  5. $458.366^{\circ}$


Correct Option: C
Explanation:

We know, $\pi$ radians is equal to $180$ degrees
$\therefore 4$ radians is equal to $4 \times \dfrac {180 }{\pi} = 180 \times 1.2733 = 229.183$ degrees

1 radian =

  1. $58^0.17$

  2. $65^0.17$

  3. $57^0.30$

  4. $66^0.71$


Correct Option: C
Explanation:
We know that, $\pi$ radian$=180^o$

so $1$ radian$=\left(\dfrac{180}{\pi}\right)^o$

$=\left(\dfrac{180}{22/7}\right)^o$

$=(57.30)^0$

If $\displaystyle\cot  \theta+\left ( \frac{1}{\sqrt{3}} \right )\sin \theta =\frac{2}{\sqrt{3}} $ then find $\displaystyle \theta $ in circular measure

  1. $\displaystyle \frac{\pi ^{2}}{2} $

  2. $\displaystyle \frac{\pi ^{2}}{3} $

  3. $\displaystyle \frac{\pi ^{2}}{4} $

  4. $\displaystyle \frac{\pi ^{2}}{6} $


Correct Option: D

The degree measure of 1 radian (taking $\pi =\dfrac { 22 }{ 7 }$ ) is

  1. $55^o{ 61 }^{ ' }{ 22 }^{ " }$ (approx.)

  2. $57^o{ 16 }^{ ' }{ 22 }^{ " }$ (approx.)

  3. $57^o{ 22 }^{ ' }{ 16 }^{ " }$ (approx.)

  4. $57^o{ 22 }^{ ' }{ 22 }^{ " }$ (approx.)


Correct Option: B
Explanation:

$\pi\ radians = 180^{\circ}$

$1\ radian=\frac { 180 }{ \pi  } = \frac { 180 }{ \frac { 22 }{ 7 }  } $
$1\ radian=57.272727$
The integer part constitutes the degree part. The mantissa is converted to minutes by multiplying with ${60}'$
Minutes = $0.272727*{60}' = {16.3636}'$
The integer part constitutes the minutes. The mantissa is converted to seconds by multiplying with ${60}''$
Seconds = $0.3636*{60}''\approx {22}''$
Hence, the degree measure of 1 radian is $57^{\circ}{16}'{22}''$

Find the radian measure corresponding to the degree $-47^{o}30'$

  1. $\dfrac {-19\ \pi}{72}rad$

  2. $\dfrac {19\ \pi}{72}rad$

  3. $\dfrac {13\ \pi}{72}rad$

  4. $None\ of\ these$


Correct Option: A
Explanation:
$-47^{o} 30'$
$\Rightarrow - (47+ \dfrac{30}{60}) (\because 1^{o} =60')$
$\Rightarrow  -\left( 47+ \dfrac{1}{2} \right)$
$-\left( \dfrac{95}{2} \right)$
Radian measure $\Rightarrow \dfrac{\pi}{180} \times \dfrac{-95}{2}$
$\Rightarrow \pi x - \dfrac{19}{72} \Rightarrow - \dfrac{19 \pi}{72}$ radian