Tag: chemical kinetics

Questions Related to chemical kinetics

The reaction $2N _2O _5(g)\, \rightarrow\, 4NO _2(g)\, +\, O _2(g)$ is first order w.r.t. $N _2O _5$. Which of the following graphs would yield a straight line ?

  1. $log\, p _{N _2O _5}$ vs time with -ve slope

  2. $(p _{N _2O _5})^{-1}$ vs time

  3. $p _{N _2O _5}$ vs time

  4. $log\, p _{N _2O _5}$ vs time with +ve slope


Correct Option: A
Explanation:

For a first order reaction, the graph of logarithm of the partial pressure of reactant to the time is a straight line with negative slope. 


Hence, $\displaystyle log\, p _{N _2O _5}$ vs time t will give a straight line.

When ethyl acetate was hydrolyzed in the presence of $0.1 M$ $HCl$, the constant was found to be $5.40\, \times\, 10^{-5}\, s^{-1}$. But when $0.1$ $M\, H _2SO _4$ was used for hydrolysis, the rate constant was found to be $6.20\, \times\,10^{-5}\, s^{-1}$. From these we can say that:

  1. $H _2SO _4$ is stronger than $HCl.$

  2. $H _2SO _4$ and $HCl$ are both of the same strength.

  3. $H _2SO _4$ is weaker than $HCl.$

  4. The data is insufficient to compare the strength of $HCl$ ad $H _2SO _4$.


Correct Option: A
Explanation:

Since $k _{H _2SO _4}\, >\, k _{HCl},$ hence $H _2SO _4$ is stronger acid than HCl.

The rate law for the reaction : $:Ester+H^+\rightarrow Acid+Alcohol\,$ is
$V\,=\,k\;\left[ester \right]\;\left[H _3O^+ \right]^0$
What would be the new rate if
(a)$\;$conc. of ester is doubled
(b)$\;$conc. of $:H^{+}$ is doubled

  1.  (a)$\;v\;$ (b)$\;2v$

  2.  (a)$\;2v\;$ (b)$\;v$

  3.  (a)$\;2v\;$ (b)$\;2v$

  4. None of the above 


Correct Option: B
Explanation:

$\upsilon=k[ester][H _3O^+]$


(a) Conc. of ester is doubled rate also double that is $2\upsilon$ because rate of the reaction depends upon ester concentration.

(b) Conc. of $H^+$ is doubled rate does not change that is $\upsilon$ because rate of the reaction does not depends on $H _3O^+$ concentration.

So answer is B.

In the presence of acid, the initial concentration of cane-sugar was reduced from 0.2 M to 0.1 in 5 hr and to 0.05 M in 10 hr. The reaction must be of :

  1. Zero order

  2. First order

  3. Second order

  4. Fractional order


Correct Option: B
Explanation:

$\displaystyle 0.2\, M \underset{t _{1/2}\, =\, 5hr}{\rightarrow} 0.1\, M \underset{t _{1/2}\, =\, 5hr}{\rightarrow} 0.05\, M$

$From\, 0.2\, M \underset{t\, =\, 10hr}{\rightarrow}\, 0.05\, M$
So $t _{1/2}$ is constant which is characteristic of first order reaction.
Hence, $t _{1/2}\, \propto\, (a)^0$.

The decomposition of $H _2O _2$ can be followed by titration with $KMnO _4$ and is found to be a first order reaction. The rate constant is $4.5\, \times\, 10^{-2}$. In an experiment, the initial titrate value was 25 mL. The titrate value will be 5 mL after a lapse of :

  1. $4.5\, \times\, 10^{-2}\, \times\, 5\, min$

  2. $\displaystyle \frac{log _{e}5}{4.5\, \times\, 10^{-2}}\, min$

  3. $\displaystyle \frac{log _{e}5/4}{4.5\, \times\, 10^{-2}}\, min$

  4. None of the above


Correct Option: B
Explanation:

As we know,
$\displaystyle t\, =\, \frac{2.303}{k}\, log\, \frac{V _0}{V _1}$

$\displaystyle =\, \frac{1}{k}\, ln\, \frac{V _0)}{V _1}$

$\displaystyle =\, \frac{1}{4.5\, \times\, 10^{-2}\, min^{-1}}\, In\, \frac{25mL}{5mL}$

$\displaystyle =\, \frac{log _{e}5}{4.5\, \times\, 10^{-2}}min$ 

The half-life of decomposition of $N _2O _5$ is a first order reaction represented by:


$N _2O _5\rightarrow N _2O _4+1/2O _2$

After 15 minutes, the volume of $O _2$ produced is 9 $mL$ and at the end of the reaction is 35 $mL$. The rate constant is equal to:

  1. $\;\displaystyle\frac{1}{15}log _e\displaystyle\frac{35}{26}$

  2. $\;\displaystyle\frac{1}{15}log _e\displaystyle\frac{44}{26}$

  3. $\;\displaystyle\frac{1}{15}log _e\displaystyle\frac{35}{36}$

  4. None of the above 


Correct Option: A
Explanation:

For a first order reaction,

$KT= ln (a/a-x)$

So, for the following reaction:

$N _2O _5\rightarrow N _2O _4+1/2O _2$

$K\times15\,=\,ln\begin{pmatrix}\displaystyle\frac{35-0}{35-9}\end{pmatrix}$


$N _2O _5\rightarrow N _2O _4+1/2O _2$

$K= \dfrac{1}{15} \,ln\begin{pmatrix}\displaystyle\frac{35}{26}\end{pmatrix}$

The reaction $N _{2}O _{5}$ (in $CCl _{4}$) $\rightarrow 2NO _{2}+1/2O _{2}(g)$ is the first order in $N _{2}O _{5}$ with rate constant $6.2\times 10^{-4}S^{-1}$. 


What is the value of the rate of reaction when $N _2O _5=1.25:mole:L^{-1}$ ?

  1. $7.75\times 10^{-4}mol:L^{-1}S^{-1}$

  2. $6.35\times 10^{-3}mol:L^{-1}S^{-1}$

  3. $5.15\times 10^{-5}mol:L^{-1}S^{-1}$

  4. $3.85\times 10^{-4}mol:L^{-1}S^{-1}$


Correct Option: A
Explanation:
For the first-order reaction, the rate of the reaction is given by the expression

Rate $\displaystyle  = k [N _2O _5]$ where k is the rate constant.

Substitute values in the above expression

Rate $\displaystyle  = 6.2\times 10^{-4}S^{-1} \times 1.25\:mole\:L^{-1} = 7.75\times 10^{-4}mol\:L^{-1}S^{-1}$

So, the correct option is $A$

The half life of decomposition of $N _2O _5$ is a first order reaction represented by
$N _2O _5\, \rightarrow\, N _2O _4\, =\, 1/2O _2$
After 15 min the volume of $O _2$ produced is $9mL$ and at the end of the reaction $35 mL$. The rate constant is equal to :

  1. $\displaystyle \frac{1}{15}\, log\frac{35}{26}$

  2. $\displaystyle \frac{1}{15}\log\frac{44}{26}$

  3. $\displaystyle \frac{1}{15}\, log\frac{35}{36}$

  4. None of the above 


Correct Option: A
Explanation:

$\displaystyle k\, =\, \frac{2.303}{t}\, log\, \frac{V _{\infty}}{V _{\infty}\, -\, V _t}$

$\displaystyle =\, \frac{1}{t}\, log _e\, \frac{V _{\infty}}{V _{\infty}\, -\, V _t}$

$\displaystyle \frac{1}{15}\, log _e\, \frac{35mL}{(35\, -\, 9)\, mL}\, =\, \frac{1}{15}\, log _e\, \frac{35}{26}$

The rate constant $k$, for the reaction
${N} _{2}{O} _{5}(g) \longrightarrow 2{NO} _{2}(g)+\cfrac{1}{2}{O} _{2}(g)$
is $1.3\times {10}^{-2}{s}^{-1}$. Which equation given below describes the change of $[{N} _{2}{O} _{5}]$ with time?
${[{N} _{2}{O} _{5}]} _{0}$ and ${[{N} _{2}{O} _{5}]} _{t}$ correspond to concentration of ${N} _{2}{O} _{5}$ initially and at time $t$.

  1. ${[{N} _{2}{O} _{5}]} _{t}={[{N} _{2}{O} _{5}]} _{0}+kt$

  2. ${[{N} _{2}{O} _{5}]} _{0}={[{N} _{2}{O} _{5}]} _{t}{e}^{kt}$

  3. $\log{{[{N} _{2}{O} _{5}]} _{t}}=\log{{[{N} _{2}{O} _{5}]} _{0}}+kt$

  4. $\ln{\cfrac{{[{N} _{2}{O} _{5}]} _{0}}{{[{N} _{2}{O} _{5}]} _{t}}}=kt$


Correct Option: D
Explanation:

As the unit of rate constant is ${sec}^{-1}$, the reaction is first order reaction. 

${N} _{2}{O} _{5}(g) \longrightarrow 2{NO} _{2}(g)+\cfrac{1}{2}{O} _{2}(g)$
$k{t}=\ln{\cfrac{a}{(a-x)}}$ 
$kt=\ln{\cfrac { { [{ N } _{ 2 }{ O } _{ 5 }] } _{ 0 } }{ { [{ N } _{ 2 }{ O } _{ 5 }] } _{ t } } }$

Inversion of cane sugar in dilute acid is:

  1. bimolecular reaction

  2. pseudo-unimolecular reaction

  3. unimolecular reaction

  4. trimolecular reaction


Correct Option: B
Explanation:

${ C } _{ 12 }{ H } _{ 22 }{ O } _{ 11 }+{ H } _{ 2 }O\xrightarrow [  ]{ \quad { H }^{ + }\quad  } { C } _{ 6 }{ H } _{ 12 }{ O } _{ 6 }+{ C } _{ 6 }{ H } _{ 12 }{ O } _{ 6 }$
Rate $=k\left[ { C } _{ 12 }{ H } _{ 22 }{ O } _{ 11 } \right] \left[ { H } _{ 2 }O \right] $
When water is in excess, its concentration will be constant.
$\therefore $ Rate $={ k }^{ ' }\left[ { C } _{ 12 }{ H } _{ 22 }{ O } _{ 11 } \right] $
The reaction is, therefore, pseudo first order or pseudo unimolecular reaction.