Tag: similarity

Questions Related to similarity

Triangles ABC and DEF are similar. If their areas are 64 $cm^2$ and 49 $cm^2$ and if AB is 7 cm, then find the value of DE.

  1. 8 cm

  2. $\dfrac{49}{8}$ cm

  3. $\dfrac{8}{49}$ cm

  4. $\dfrac{64}{7}$cm


Correct Option: B
Explanation:

$\Delta ABC \Delta DEF$
$\dfrac{AB}{DE} = \dfrac{BC}{EF} = \dfrac{AC}{DF}$.
We know that,
$\dfrac{Area of \Delta  ABC}{ Area of \Delta  DEF} = $ $\Rightarrow \dfrac{64}{49} = \left ( \dfrac{7}{DE} \right )^2$
$\Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \frac{7}{DE} \right )^2 \Rightarrow \left ( \dfrac{8}{7} \right )^2 = \left ( \dfrac{7}{DE} \right )^2 = \dfrac{49}{8}$cm 

If $\triangle ABC\sim \triangle QRP,\dfrac{Ar(ABC)}{Ar(QRP)}=\dfrac{9}{4}$,$AB=18\ cm$ and $BC=15\ cm$; then $PR$ is equal to:

  1. $10\ cm$

  2. $12\ cm$

  3. $20\ cm$

  4. $8\ cm$


Correct Option: A
Explanation:

Given $ \triangle  ABC \sim  \triangle  QRP $
Therefore, $ \frac { Area\triangle ABC\quad  }{ Area\triangle QRP\quad }=\frac { { BC }^{ 2 } }{ { PR }^{ 2 } }  $
or $ \frac { 9 }{ 4 }  = \frac { { 15 }^{ 2 } }{ { PR }^{ 2 } }  $
or $ { PR }^{ 2 }\quad =\quad \frac { { 15 }^{ 2 }\quad \times \quad 4 }{ 9 }  $ cm.
Therefore, $ { PR }=\frac { { 15 }\times \quad 2 }{ 3 }  = $ 10 cm.

Which among the following is/are correct?
(I) If the altitudes of two similar triangles are in the ratio $2:1$, then the ratio of their areas is $4 : 1$.
(II) $PQ \parallel BC$ and $AP : PB=1:2$. Then, $\dfrac{A(\triangle APQ)}{A(\triangle ABC)}=\dfrac{1}{4}$

  1. $(I)$

  2. $(II)$

  3. Both $(I)$ and $(II)$

  4. None of the above


Correct Option: A
Explanation:

Option A: This statement is correct. The ratio of the altitudes of the similar triangles  is  $2:1$

Ratio of the areas of the similar triangles $=$ Square of the ratio of  the  altitudes.

$\therefore$ Ratio  of  the  areas $ =  { \left( \dfrac { 2 }{ 1 }  \right)  }^{ 2 }=  4:1$


Option B: If  $PQ\parallel BC$,  then $\triangle APQ \sim \triangle ABC$ by AA test of similarity.

Hence, $\dfrac {A( \triangle APQ)}{A(\triangle ABC)}=\dfrac { AP^2 }{ AB^2 }$

If $AP = x$ and $BP = 2x$, then $AB = 3x$.

$\therefore \dfrac {A( \triangle APQ)}{A(\triangle ABC)}=\dfrac 19$

So, the given statement is false

Two triangles ABC and PQR  are similar, if $BC : CA : AB = $1: 2 : 3, then $\dfrac{QR}{PR}$ is

  1. $\dfrac{1}{3}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{{\sqrt{2}}}$

  4. $\dfrac{2}{3}$


Correct Option: B
Explanation:

Two triangle ABC and PQR are similar then,
$AB: BC:CA :: PQ: QR: PR$
Given $BC: CA = 1:2$ 
Hence, $QR : PR = BC : CA = 1:2$

Let $\displaystyle \Delta XYZ$ be right angle triangle with right angle at Z. Let $\displaystyle A _{X}$ denotes the area of the circle with diameter YZ. Let $\displaystyle A _{Y}$ denote the area of the circle with diameter XZ and let $\displaystyle A _{Z}$ denotes the area of the circle diameter XY. Which of the following relations is true?

  1. $\displaystyle A _{Z}=A _{X}+A _{Y}$

  2. $\displaystyle A _{Z}=A^{2} _{X}+A^{2} _{Y}$

  3. $\displaystyle A^{2} _{Z}=A^{2} _{X}+A^{2} _{Y}$

  4. $\displaystyle A^{2} _{Z}=A^{2} _{X}-A^{2} _{Y}$


Correct Option: A
Explanation:

In $\triangle XYZ$, using Pythagoras theorem,
$XY^2 = XZ^2 + YZ^2$
$\pi XY^2 = \pi XZ^2 + \pi YZ^2$ (Multiply by $\pi$)
$A _z = A _x + A _y$