Tag: real numbers

Questions Related to real numbers

Select the correct inequality between the two numbers $:$

$|-10| $ $....$  $|28|$

  1. $<$

  2. $>$

  3. $=$

  4. can't say


Correct Option: A
Explanation:

$|-10| = 10$ and $|28| = 28$

$\therefore 10 < 28$
So, option $A$ is correct.

Simplification of $(-|-16|)^2$ is

  1. $216$

  2. $400$

  3. $-160$

  4. $256$


Correct Option: D
Explanation:
Since $|-x| = x$
$(-|-16|)^2 = (-(16))^2 = (-16)^2 = 256$

So, option $D$ is correct.

Simplification of $|0 \times (-9)|$ is

  1. $0$

  2. $|-9|$

  3. $9$

  4. All of the above


Correct Option: A
Explanation:

$|0(-9)| = |0| = 0$

Product of any number with $0$ is $0.$ 
So, option $A$ is correct.

Simplification of $-|-4|^2$ is

  1. $2$

  2. $-2$

  3. $-16$

  4. $16$


Correct Option: C
Explanation:
Since $|-x| = x$
$-|-4|^2 = -(4)^2 = -16$
So, option $C$ is correct.

Simplify $| |-5| - 16 + |-1| | $.

  1. $-12$

  2. $-10$

  3. $10$

  4. $12$

  5. $22$


Correct Option: C
Explanation:

Rule: $|x|=x$ when $x$ is positive integer and $|x|=-x$ when $x$ is negative integer. So

$||-5|-16+|-1||$
$\Rightarrow |-(-5)-16+[-(-1)]|$
$\Rightarrow |+5-16+1|$
$\Rightarrow |-10|=10$

The value of $|7|+|5|-|7|-|1-3|$= ___________.

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: D
Explanation:

$|7|+|5|-|7|-|1-3|$

$|7|+|5|-|7|-|-2|$
$=7+5-7-2$  ............  $\because|-2|=2$
$=3$
Hence the correct answer is option D.

If $x$ be real and positive, then the value of
$y = x + \frac{1}{x}$ satisfies

  1. $0 < y \leq 0.5$

  2. $0.5 < y \leq 1$

  3. $1 < y < 2$

  4. $y \geq 2$


Correct Option: D
Explanation:

$ Given\quad y\quad =\quad x+\frac { 1 }{ x } \ \quad =(\sqrt { x } )^{ 2 }+\left( \frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }\ \quad =\left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\sqrt { x } \frac { 1 }{ \sqrt { x }  } \ \quad =\left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\ First\quad term\quad is\quad a\quad squared\quad term\quad so\quad it\quad is\quad positive.\ \therefore \quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\quad >2 \quad when\quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }\quad has\quad a\quad finite\quad value\ and\quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\quad =\quad 2\quad \quad  when\quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }\quad is\quad zero.\ \therefore \quad y\ge 2\quad \quad (Ans) $

The largest number of the three consecutive number is $(x+2)$, then the smallest number is

  1. x+2

  2. x+1

  3. x

  4. x-1


Correct Option: C

The absolute value of $\dfrac { \displaystyle\int _{ 0 }^{ \pi /2 }{ \left( x\cos { x+1 }  \right) { e }^{ \sin { x }  }dx }  }{ \displaystyle\int _{ 0 }^{ \pi /2 }{ \left( x\sin { x-1 }  \right) { e }^{ \cos { x }  }dx }  } $ is equal to 

  1. $e$

  2. $\pi e$

  3. $\dfrac{e}{2}$

  4. $\dfrac{\pi}{e}$


Correct Option: A
Explanation:

$\begin{array}{l} We\, have \ I=\dfrac { { \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ { e^{ \sin  x } }\left( { x\cos  x+1 } \right) dx }  } }{ { \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ { e^{ \cos  x } }\left( { x\sin  x-1 } \right) dx }  } }  \ =\dfrac { { \left[ { x{ e^{ \sin  x } } } \right] _{ 0 }^{ \frac { \pi  }{ 2 }  } } }{ { \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ { e^{ \cos  x } }\left( { 1-x\sin  x } \right) dx }  } } =\dfrac { { \frac { \pi  }{ 2 } \times e } }{ { \left[ { { e^{ \cos  x } }x } \right] _{ \frac { \pi  }{ 2 }  }^{ 0 } } }  \ =\dfrac { { \frac { \pi  }{ 2 } e } }{ { 0-\frac { \pi  }{ 2 }  } } =-e \ Hence,\, absolute\, value\, =e \ Hence,\, option\, A\; is\, the\, correct\, answer. \end{array}$

Absolute value of $+16$ is:

  1. $-16$

  2. $0$

  3. $+16$

  4. $16$


Correct Option: D
Explanation:

Absolute value is always a positive value. 

So absolute value of $+16$ is $16$. 
Because a simple digit always shows the positive value and there is no need to show the positive sign over there.
Hence, the answer is $16$.