Tag: hyperbola

Questions Related to hyperbola

Find the locus of the point of intersection of the lines $\sqrt{3}x-y-4\sqrt{3} \lambda=0$ and $\sqrt{3}\lambda x+\lambda y-4\sqrt{3}=0$ for different values of $\lambda$.

  1. $4x^2-y^2=48$

  2. $x^2-4y^2=48$

  3. $3x^2-y^2=48$

  4. $y^2-3x^2=48$


Correct Option: C
Explanation:

Let $(h,k)$ be the point of intersection of the given lines. Then,


$\sqrt{3}h-k-4\sqrt{3} \lambda=0$ and $\sqrt{3} \lambda h+\lambda k-4\sqrt{3}=0$


$\sqrt{3}h-k=4\sqrt{3}\lambda$ and $\lambda(\sqrt{3}h+k)=4\sqrt{3}$

$(\sqrt{3}h-k)\lambda(\sqrt{3}h+k)=(4\sqrt{3}\lambda)(4\sqrt{3})$

$3h^2-k^2=48$

Hence, the locus of (h,k) is $3x^2-y^2=48$.

The AFC Curve passes through the Origin statement is -

  1. True

  2. False

  3. Partially True

  4. Nothing can be said


Correct Option: B
Explanation:

AFC curve is downward sloping because fixed costs are distributed over large volume when quantity produced increases.

So, it doesn't pass through origin.

$Center\quad of\quad the\quad hyperbola\quad { x }^{ 2 }+4{ y }^{ 2 }+6xy+8x-2y+7=0\quad is\quad $

  1. $(1,1)$

  2. $(0,2)$

  3. $(2,0)$

  4. $None\quad of\quad these$


Correct Option: D
Explanation:
Given Hyperbola: $x^{2}+4y^{2}+6xy+8x-2y+7=0$
Centre: Point of intersection of asymptotes of hyperbola.
Now finding Asymptotes of given equation, taking equation of asymptote $y=mx+c$ by replacing $x\rightarrow 1, y\rightarrow m$ in $\phi _n(m)$
When $n=2$, $\phi _{2}(m)=1+4m^{2}+6m$
$\phi _{1}(m)=8-2m$
$\phi _{0}(m)=7$
$\phi _{2}^{1}(m)=8m+6$
$\phi _{1}(m)=8-2m$

Putting $\phi _{2}(m)=0$
$\Rightarrow 1+6m+4m^{2}=0$
$\Rightarrow  m=\cfrac{-6\pm \sqrt {36-16}}{2(4)}$
$\Rightarrow m=\cfrac{-6\pm\sqrt 20}{2(4)}$
$\Rightarrow m=\cfrac{-3\pm \sqrt 5}{4}$
So, m$=\cfrac{-3+\sqrt 5}{4}, \cfrac{-3-\sqrt 5}{4}$
Value of $c$, when $m$ is different
$c= \cfrac{-\phi _{1}(m)}{\phi _{2}^{'}(m)}=\cfrac{8-2m}{8m+6}$

For $m=\cfrac{-3+\sqrt 5}{4}, c=\cfrac{8-2(\cfrac{-3+\sqrt 5}{4})}{8\cfrac{-3+\sqrt 5}{4})+6}=\cfrac{3-\sqrt 5+16}{-6+2\sqrt 5+6}=\cfrac{19\sqrt 5-5}{10}$

For $m=\cfrac{-3-\sqrt 5}{4}, c=\cfrac{8-2(\cfrac{-3-\sqrt 5}{4})}{8\cfrac{-3-\sqrt 5}{4})+6}=\cfrac{19+15}{-2 \sqrt 5}=\cfrac{-(19\sqrt 5+5)}{10}$
Equation of Asymptotes : $y=\cfrac{-3+\sqrt 5}{4}x +\cfrac{19\sqrt 5-5}{10}$ & $y=\cfrac{-3-\sqrt 5}{4}x-(\cfrac{5+19\sqrt 5}{10})$
On solving them for x & y, putting LHS-RHS
$\Rightarrow 0=\cfrac{\sqrt 5}{2}x+\cfrac{19\sqrt 5}{5} \Rightarrow x=\cfrac{-38}{5}$
Now putting values of x in Asymptotes equation, we get
$y=\cfrac{-3-\sqrt 5(-19)}{10}+\cfrac{+5+19\sqrt 5}{10}=\cfrac{+52}{10}$
Centre$(\cfrac{-38}{5}, \cfrac{+52}{10})$.

Circles are drawn on chords of the rectangular hyperbola $xy=4$ parallel to the line $y=x$ as diameters.All such circles pass through two fixed points whose coordinates are 

  1. $\left(2,2\right)$

  2. $\left(2,-2\right)$

  3. $\left(-2,2\right)$

  4. $\left(-2,-2\right)$

Correct Option: A,D
Explanation:
Given:Rectangular hyperbola $xy=4={c}^{2}$
$\Rightarrow\,{c}^{2}=4$
$\Rightarrow\,c=2$
Let $P$ and $Q$ be the end points on the Rectangular hyperbola where $P\left(2{t} _{1},\dfrac{2}{{t} _{1}}\right)$ and $Q\left(2{t} _{2},\dfrac{2}{{t} _{2}}\right)$
Using the end points of diameter the equation of the circle

$C:\left(x-2{t} _{1}\right)\left(x-2{t} _{2}\right)+\left(y-\dfrac{2}{{t} _{1}}\right)\left(y-\dfrac{2}{{t} _{2}}\right)=1$         ..........$(1)$

Now,Slope of the $PQ=\dfrac{\dfrac{2}{{t} _{2}}-\dfrac{2}{{t} _{1}}}{2{t} _{2}-2{t} _{1}}$

$=\dfrac{2\left(\dfrac{1}{{t} _{2}}-\dfrac{1}{{t} _{1}}\right)}{2\left({t} _{2}-{t} _{1}\right)}$

$=\dfrac{\dfrac{{t} _{1}-{t} _{2}}{{t} _{1}{t} _{2}}}{\left({t} _{2}-{t} _{1}\right)}$

$=\dfrac{\dfrac{{t} _{1}-{t} _{2}}{{t} _{1}{t} _{2}}}{\left({t} _{2}-{t} _{1}\right)}$

$=\dfrac{-1}{{t} _{1}{t} _{2}}$

Hence $PQ$ is the diameter for circle and it is parallel to the line $y=x$

Slope of $PQ=$Slope of the line $y=x$

$\Rightarrow\,\dfrac{-1}{{t} _{1}{t} _{2}}=1$

$\Rightarrow\,{t} _{1}{t} _{2}=-1$

$(1)\Rightarrow\,\left(x-2{t} _{1}\right)\left(x-2{t} _{2}\right)+\left(y-\dfrac{2}{{t} _{1}}\right)\left(y-\dfrac{2}{{t} _{2}}\right)=1$ 

$\Rightarrow\,x\left(x-2{t} _{2}\right)-2{t} _{1}\left(x-2{t} _{2}\right)+y\left(y-\dfrac{2}{{t} _{2}}\right)-\dfrac{2}{{t} _{1}}\left(y-\dfrac{2}{{t} _{2}}\right)=1$
 
$\Rightarrow\,{x}^{2}-2x{t} _{2}-2x{t} _{1}+4{t} _{1}{t} _{2}+{y}^{2}-\dfrac{2y}{{t} _{2}}-\dfrac{2y}{{t} _{1}}+\dfrac{4}{{t} _{1}{t} _{2}}=1$

$\Rightarrow\,{x}^{2}-2x{t} _{2}-2x{t} _{1}+4\times -1+{y}^{2}-\dfrac{2y}{{t} _{2}}-\dfrac{2y}{{t} _{1}}+\dfrac{4}{\times -1}=1$ using ${t} _{1}{t} _{2}=-1$

$\Rightarrow\,{x}^{2}+{y}^{2}-2x\left({t} _{2}+{t} _{1}\right)-4-2y\left(\dfrac{1}{{t} _{2}}+\dfrac{1}{{t} _{1}}\right)-4=1$

$\Rightarrow\,{x}^{2}+{y}^{2}-8-2x\left({t} _{2}+{t} _{1}\right)-2y\left(\dfrac{{t} _{1}+{t} _{2}}{{t} _{1}{t} _{2}}\right)=1$

$\Rightarrow\,{x}^{2}+{y}^{2}-8-2x\left({t} _{2}+{t} _{1}\right)-2y\left(\dfrac{{t} _{1}+{t} _{2}}{-1}\right)=1$ using ${t} _{1}{t} _{2}=-1$

$\Rightarrow\,{x}^{2}+{y}^{2}-8-2x\left({t} _{2}+{t} _{1}\right)+2y\left({t} _{1}+{t} _{2}\right)=1$ 

$\Rightarrow\,{x}^{2}+{y}^{2}-8+\left(2y-2x\right)\left({t} _{2}+{t} _{1}\right)=1$ is of the form $C+\lambda\,L$ 

where $C={x}^{2}+{y}^{2}-8=0$ is the equation of a circle.
and $L=2y-2x=0$ is the equation of a line.
$\Rightarrow\,y-x=0$ or $x=y$

Substituting $x=y$ in the equation ${x}^{2}+{y}^{2}-8=0$ we get
$\Rightarrow\,2{x}^{2}-8=0$

$\Rightarrow\,2\left({x}^{2}-4\right)=0$

$\Rightarrow\,\left(x-2\right)\left(x+2\right)=0$

$\therefore\,x=2,-2$

$\Rightarrow\,y=2,-2$ since $x=y$

Hence the coordinates of the fixed points are $\left(2,2\right)$ and $\left(-2,-2\right)$ 

Centre of the hyperbola ${x^2} + 4{y^2} + 6xy + 8x - 2y + 7 = 0$ is 

  1. $(1,1)$

  2. $(0,2)$

  3. $(2,0)$

  4. None of these


Correct Option: D
Explanation:

Consider equation of a hyperbola as $F=ax^2+2by+cy^2+2dx+2ey+f=0$

The centre of this hyperbola can be found by applying the concepts of partial differentiation
We first find $\dfrac{\delta F}{\delta x} $ and $\dfrac{\delta F}{\delta y}$
We then solve $\dfrac{\delta F}{\delta x} =0$ and $\dfrac{\delta F}{\delta y}=0 $ to find $x,y$ which is the centre of the hyperbola .

Given that,
$F=x^2+4y^2+6xy+8x-2y+7$

$\Rightarrow \dfrac{\delta F}{\delta x}=2x+0+6y+8+0+0$

$\Rightarrow \dfrac{\delta F}{\delta x}=2x+6y+8$         ...$(1)$

$\Rightarrow \dfrac{\delta F}{\delta y}=0+8y+6x+0-2+0$

$\Rightarrow \dfrac{\delta F}{\delta y}=6x+8y-2$      ....$(2)$
 
$(1) \rightarrow 2x+6y+8=0$                    

$(2) \rightarrow 6x+8y-2=0$

Solving $(1), (2)$ we get,

$\Rightarrow x=\dfrac{19}{5}, y=\dfrac{-13}{5}$

Therefore the centre of hyperbola is $(\dfrac{19}{5},\dfrac{-13}{5})$



The eccentricity of the hyperbola whose latus-return is $8$ and length of the conjugate axis is equal to half the distance between the foci, is

  1. $\dfrac43$

  2. $\dfrac4{\surd 3}$

  3. $\dfrac2{\surd 3}$

  4. $None\ of\ these$


Correct Option: C
Explanation:

Given that the length of the latus rectum is $8$ and length of the conjugate axis is equal to half the distance between the foci.


$\Rightarrow \dfrac{2b^2}{a}=8$ and $2b=\dfrac{1}{2}(2ae)$

$\therefore \dfrac{2}{a}\left(\dfrac{ae}{2}\right)^2=8$

$\Rightarrow ae^2=16$ ...(1)

We have $\dfrac{2b^2}{a}=8$

$\Rightarrow b^2=4a$

$\Rightarrow a^2(e^2-1)=4a$

$\Rightarrow ae^2-a=4$

$\Rightarrow 16-a=4$ (by (1))

$\Rightarrow a=12$

Substitute $a=12$ in (1)

$\Rightarrow 12e^2=16$

$\Rightarrow e^2=\dfrac{4}{3}$

$\therefore e=\dfrac{2}{\sqrt{3}}$

From any point on the hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ tangents are drawn to the hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$. The area cut-off by the chord of contact on the asymptotes is equal to

  1. $\displaystyle \frac{ab}{2}$

  2. ab

  3. 2 ab

  4. 4 ab


Correct Option: D
Explanation:

Let $P\left( { x } _{ 1 },{ y } _{ 1 } \right) $ be a point on the hyperbola $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 }
}{ { b }^{ 2 } } =1$. Then,
$\cfrac { { { x } _{ 1 } }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { { y } _{ 1 } }^{ 2 } }{ { b }^{ 2 } } =1$
The chord of contact of tangents from $P$ to the hyperbola $\cfrac { { x

}^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =2$ is
$\cfrac

{ { x }{ x } _{ 1 } }{ { a }^{ 2 } } -\cfrac { { y }{ y } _{ 1 } }{ { b

}^{ 2 } } =2\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$

The equations of the asymptotes are
$\cfrac { x }{ a } -\cfrac { y }{ b } =0$ and $\cfrac { x }{ a } +\cfrac { y }{ b } =0$

The points of intersection of $(i)$ with the two asymptotes are given by
${

x } _{ 1 }=\cfrac { 2a }{ \cfrac { { x } _{ 1 } }{ a } -\cfrac { { \quad y

} _{ 1 } }{ b }  } \quad ,{ \quad y } _{ 1 }=\cfrac { 2b }{ \cfrac { { x

} _{ 1 } }{ a } -\cfrac { { \quad y } _{ 1 } }{ b }  } $
${ x } _{ 2

}=\cfrac { 2a }{ \cfrac { { x } _{ 1 } }{ a } -\cfrac { { \quad y } _{ 1 }

}{ b }  } \quad ,{ \quad y } _{ 2 }=\cfrac {- 2b }{ \cfrac { { x } _{ 1 }

}{ a } -\cfrac { { \quad y } _{ 1 } }{ b }  } $
$\quad \therefore $ Area of the triangle
$\cfrac

{ 1 }{ 2 } \left( { x } _{ 1 }{ y } _{ 2 }-{ x } _{ 2 }{ y } _{ 1 } \right)

=\cfrac { 1 }{ 2 } \left( \cfrac { 4ab\times 2 }{ \cfrac { { { x } _{ 1 }

}^{ 2 } }{ { a }^{ 2 } } +\cfrac { { { y } _{ 1 } }^{ 2 } }{ { b }^{ 2 }

}  }  \right) =4ab$

Let $a, b$ be non-zero real numbers. The equation $\displaystyle \left ( ax^{2}+by^{2}+c \right )\left ( x^{2}-5xy+6y^{2} \right )$ represents

  1. four straight lines, when $\displaystyle c=0$ and $a, b$ are of the same sign

  2. two straight lines and a circle, when $\displaystyle a=b$ and $c$ is of sign opposite to that of $a$

  3. two straight lines and a hyperbola, when $a$ and $b$ are of the same sign and $c$ is of sign opposite to that of $a$

  4. a circle and an ellipse, when $a$ and $b$ are of the same sign


Correct Option: B
Explanation:

From given expression, $\displaystyle { x }^{ 2 }-5xy+6{ y }^{ 2 }=0$ are pair of straight lines $\displaystyle y=\frac { x }{ 2 } $ and $ y=\dfrac { x }{ 3 } $
Now, $\displaystyle a{ x }^{ 2 }+b{ y }^{ 2 }+c=0$ will be cirlce of radius $\displaystyle \sqrt { -\frac { c }{ a }  } $.

If $\displaystyle a=b$ and $\displaystyle c$ is of opposite sign of $\displaystyle a  $ and $  b$, then $\displaystyle { x }^{ 2 }+{ y }^{ 2 }=-\frac { c }{ a } $

If a hyperbola passes through the foci of the ellipse $\displaystyle \frac {x^2}{25} + \frac {y^2}{16} = 1$ and its traverse and conjugate axis coincide with major and minor axes of the ellipse, and product of the eccentricities is 1, then:

  1. Equations of the hyperbola is $\displaystyle \frac {x^2}{9} - \frac {y^2}{16} = 1$

  2. Equations of the hyperbola is $\displaystyle \frac {x^2}{9} - \frac {y^2}{25} = 1$

  3. Focus of the hyperbola is $\displaystyle (5, 0)$

  4. Focus of the hyperbola is $\displaystyle (5 \sqrt 3, 0)$


Correct Option: A,C
Explanation:

Given ellipse is, $\displaystyle \frac {x^2}{25} + \frac {y^2}{16} = 1$
Eccentricity of the ellipse is, $\displaystyle e _e  =\sqrt{1-\frac{b^2}{a^2}}=\frac{3}{5}$
So the foci of the ellipse is, $(\pm ae _e,0)=(\pm 3 , 0)$
Let eccentricity of the required  hyperbola is $e _h$ and semi major and minor axes are $a$ and $b$, so the equation of hyperbola is, $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$
Given hyperbola passes trough $(\pm 3,0)\Rightarrow \displaystyle \frac{9}{a^2}-\frac{0}{b^2}=1\Rightarrow a^2 = 9$
Also given that $\displaystyle  e _e\times e _h = 1$ $\Rightarrow e _h=\cfrac{5}{3}$ $\Rightarrow$ $b^2 =a^2(e _h^2-1)=16 $
Hence required hyperbola is, $\displaystyle \frac{x^2}{9}-\frac{y^2}{16}=1$
And foci of the hyperbola is, $(\pm 5,0)$

The equation ${x}^{2}+9=2{y}^{2}$ is an example of which of the following curves?

  1. hyperbola

  2. circle

  3. ellipse

  4. parabola

  5. line


Correct Option: A
Explanation:

Given, ${x}^{2}+9=2{y}^{2}$ 

$\Rightarrow 2{y}^{2}-{x}^{2}=9$
$\Rightarrow \dfrac { { y }^{ 2 } }{ 9/2 } -\dfrac { { x }^{ 2 } }{ 9 } =1$
It is in the form of $\dfrac { { y }^{ 2 } }{ { a }^{ 2 } } -\dfrac { { x }^{ 2 } }{ { b }^{ 2 } } =1$ which is the equation of hyperbola.
Therefore, the given equation is a equation of hyperbola.