Tag: hyperbola

Questions Related to hyperbola

Equation of the transverse and conjugate axis of a hyperbola are respectively $x+2y-3=0$, $2x-y+4=0$ and their respectively lengths are $\sqrt {2}$ and $\cfrac { 2 }{ \sqrt { 3 }  } $ then answer the following 
Equation of one of the directrix is

  1. $2x-y+4+\sqrt { \cfrac { 3 }{ 2 } } =0\quad $

  2. $x+2y+4-\sqrt { \cfrac { 2 }{ 3 } } =0$

  3. $2x-y=\sqrt { \cfrac { 3 }{ 2 } } $

  4. $2x-y+4+\sqrt { \cfrac { 3 }{ 2 } } =\sqrt { 3 } $


Correct Option: A

The equation of a hyperbola is given in its standard form as $16x^2-9y^2=144$.Coordinates of foci is

  1. $(0, \pm 1)$

  2. $(0, \pm 1, 0)$

  3. $(\pm 5, 0)$

  4. $(0, \pm 5)$


Correct Option: D
Explanation:

$Given\quad :\quad 16{ x }^{ 2 }−9{ y }^{ 2 }=144\quad \quad \quad \ Or,\quad \frac { { x }^{ 2 } }{ 9 } -\frac { { y }^{ 2 } }{ 16 } =1\ We\quad know,\ be=\sqrt { { a }^{ 2 }+{ b }^{ 2 } } \quad \quad \quad \quad \quad \because (b>a)\ Or,\quad be=\sqrt { 9+16 } \ Or,\quad be=\pm 5\ \therefore \quad Focii\quad is\quad (0,\pm 5)\quad $


Option [D]

Hyperbola $\dfrac{{x}^{2}}{{a}^{2}}-\dfrac{{y}^{2}}{3}=1$ of eccentricity $e$ is confocal with the ellipse $\dfrac{{x}^{2}}{8}+\dfrac{{y}^{2}}{4}=1$. Let $A$, $B$, $C$ & $D$ are points of intersection of hyperbola & ellipse, then-

  1. $e=\dfrac{5}{2}$

  2. $e=2$

  3. $A$, $B$, $C$, $D$ are concyclic points

  4. Number of common tangents of hyperbola & ellipse is $2$


Correct Option: A

The foci of hyperbola $9x^2-16y^2+18x+32y=151$ are 

  1. $(-4,1),(6,1)$

  2. $(-11,2),(-6,1)$

  3. $(4,1),(-6,1)$

  4. $(2,1),(1,-6)$


Correct Option: C
Explanation:
$9{x}^{2}−16{y}^{2}+18x+32y=151$
$\left(9{x}^{2}+18x\right)-\left(16{y}^{2}-32y\right)=151$
$\Rightarrow \left({\left(3x\right)}^{2}+2\times 3x\times 3+{3}^{2}-{3}^{2}\right)-\left({\left(4y\right)}^{2}-2\times 4y\times 4+{4}^{2}-{4}^{2}\right)=151$ by completing the square method
$\Rightarrow {\left(3x+3\right)}^{2}-9-{\left(4y-4\right)}^{2}+16=151$
$\Rightarrow {\left(3x+3\right)}^{2}-{\left(4y-4\right)}^{2}=151-7$
$\Rightarrow {\left(3x+3\right)}^{2}-{\left(4y-4\right)}^{2}=144$
$\Rightarrow 9{\left(x+1\right)}^{2}-16{\left(y-1\right)}^{2}=144$
$\Rightarrow \dfrac{9{\left(x+1\right)}^{2}}{144}-\dfrac{16{\left(y-1\right)}^{2}}{144}=1$ by dividing both sides by $144$
$\Rightarrow \dfrac{{\left(x+1\right)}^{2}}{16}-\dfrac{{\left(y-1\right)}^{2}}{9}=1$ is the equation of the horizontal hyperbola.
center$=\left(-1,1\right)$
We have $a=4$ and $b=3$
${c}^{2}={a}^{2}+{b}^{2}={4}^{2}+{3}^{2}=16+9=25$
$\therefore c=\sqrt{25}=\pm 5$
Foci$=\left(-1\pm 5, 1\right)$
$\therefore$Foci$=\left(-1+5,1\right)$ and $\left(-1-5,1\right)$
Hence Foci$=\left(4,1\right)$ and $\left(-6,1\right)$

If foci of $\dfrac {x^2}{a^2}-\dfrac {y^2}{b^2}=1$ coincide with the foci of $\dfrac {x^2}{25}+\dfrac {y^2}{9}=1$ and eccentricity of the hyperbola is 2, then :

  1. $a^2+b^2=16$

  2. there is no director circle to the hyperbola

  3. centre of the director circle is $(0, 0)$

  4. length of latus rectum of the hyperbola $=12$


Correct Option: A,B,D
Explanation:

$\displaystyle \frac { { x }^{ 2 } }{ 25 } +\frac { { y }^{ 2 } }{ 9 } =1$
which is an ellipse.
For ellipse, $a=5$ , $b=3$ 
$\Rightarrow \displaystyle e=\sqrt {\frac {25-9}{25}}=\frac {4}{5}$
$\therefore ae=4$
Hence, the foci are $(-4, 0)$ and $(4, 0)$.
For the hyperbola,
$ae=4, e=2$
$\Rightarrow a=2$
$b^2=4(4-1)=12$
$\Rightarrow b=\sqrt {12}$
$\Rightarrow a^2+b^2=16$
Since $b^2>a^2$, so there is no director circle to the hyperbola.
Length of latus rectum $\displaystyle=\frac{2b^2}{a}=12$

The centre of the conic section $14x^2-4xy+11y^2-44x-58y+71=0$ is

  1. $(2, 3)$

  2. $(2, -3)$

  3. $(-2, 3)$

  4. $(-2, -3)$


Correct Option: A
Explanation:

Let $S\equiv 14x^2-4xy+11y^2-44x-58y+71$
To know centre of this hyperbola, $\cfrac{\partial S}{\partial x}=0$ and $\cfrac{\partial S}{\partial y}=0 $
$\Rightarrow \cfrac{\partial S}{\partial x}=28x-4y-44=0\Rightarrow 7x-y-11=0  ..(1)$
and $\cfrac{\partial S}{\partial y}=-4x+22y-58=0\Rightarrow 2x-11y+29=0  ..(2)$
Solving $(1)$ and $(2)$ we get required centre $(2,3)$
Hence, option 'A' is correct.

The vertices and the foci of a hyperbola are the points $\displaystyle \left ( \pm 5, 0 \right )$ and $\displaystyle \left ( \pm 7, 0 \right )$.Which of the following holds true?

  1. $\displaystyle a^{2}\neq b^{2}$

  2. $a^2=b^2$

  3. $\dfrac{a^2}{b^2}=2$

  4. None of these


Correct Option: A
Explanation:

$\displaystyle a= 5, ae = 7\Rightarrow a^{2}e^{2}= 49$
or $\displaystyle a^{2}\left ( 1+\frac{b^{2}}{a^{2}} \right )= 49$ 

Or 
$\displaystyle a^{2}+b^{2}=49$ 
$\displaystyle b^{2}= 24$ 
Since, $\displaystyle a^{2}\neq b^{2},$ hence hyperbola is not rectangular.

An ellipse intersects the hyperbola $2x^{2}-2y^{2}=1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinates axes, then

  1. equation of ellipse is $x^{2}+2y^{2}=2$

  2. the foci of ellipse are $\left ( \pm 1, 0 \right )$

  3. equation of ellipse is $x^{2}+2y^{2}=4$

  4. the foci of ellipse are $\left ( \pm \sqrt{2}, 0 \right )$


Correct Option: A,B
Explanation:

Eccentricity of the hyperbola is $\sqrt{2}$ as it is a rectangular hyperbola. 

So eccentricity $e$ of the ellipse is $\dfrac1{\sqrt{2}}$
Let the equation of the ellipse be $\displaystyle \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where $b^{2}=a^{2}\left ( 1-e^{2} \right )=\dfrac{a^{2}}2\Rightarrow a^{2}=2b^{2}$
So equation of the ellipse is $x^{2}+2y^{2}=a^{2}$
Let $\left ( x _{1}, y _{1} \right )$ be a point of intersection of the ellipse and the hyperbola
Then $2x _{1}^{2}-2y _{1}^{2}=1$ and $x _{1}^{2}+2y _{1}^{2}=a^{2}$          (1)
Equations of the tangents at $\left ( x _{1}, y _{1} \right )$ to the two conics are
   $2xx _{1}-2yy _{1}=1$ and $xx _{1}+2yy _{1}=a^{2}$
Since the two conics intersect orthogonally
$\displaystyle \left ( \frac{x _{1}}{y _{1}} \right )\left ( -\frac{x _{1}}{2y _{1}} \right )=-1\Rightarrow x _{1}^{2}=2y _{1}^{2}$
And from (1) we get $x _{1}^{2}=1$, $a^{2}=2$.
Hence the equation of the ellipse is $x^{2}+2y^{2}=2$ and its focus is
   $\displaystyle \left ( \pm ae, 0 \right )=\left ( \pm \sqrt{2}\times \frac{1}{\sqrt{2}}, 0 \right )=\left ( \pm 1, 0 \right )$