Tag: waves

Questions Related to waves

A sonometer wire under a tension of 10 kg weight is in unison with tuning fork of frequency 320 Hz. To make the wire vibrate in unison with a tuning fork of frequency 256 Hz, the tension should be altered by 

  1. 3.6 kg decreased

  2. 3.6 kg increased

  3. 6.4 kg decreased

  4. 6.4 kg increased


Correct Option: A
Explanation:

frequency in a sonometer is given as $f= \dfrac{v}{2l}\sqrt{\dfrac{T}{\mu}}$


$\dfrac{f _1}{f _2} = \sqrt{\dfrac{T _1}{T _2}}$

$\dfrac{320}{256} = \sqrt{\dfrac{10\times g}{T _2}}$

$\dfrac{5}{4} = \sqrt{\dfrac{10\times g}{T _2}}$

$T _2= \dfrac{16}{25} \times 10 g \ N$

$T _2 = 6.4 kg$

Tension to be decreased by 3.6 kg. 

A transverse wave is described by the equation $\displaystyle Y=Y _{0}\sin 2\pi \left ( ft-x/\lambda  \right )$. The maximum particle velocity is equal to four times the wave velocity if

  1. $\displaystyle \lambda =\pi Y _{0}/4 $

  2. $\displaystyle \lambda =\pi Y _{0}/2 $

  3. $\displaystyle \lambda =\pi Y _{0} $

  4. $\displaystyle \lambda =2\pi Y _{0} $


Correct Option: B
Explanation:

$y={ Y } _{ 0 }\sin { 2\pi \left( ft-\frac { x }{ \lambda  }  \right)  } $

Maximum particle velocity
${ V } _{ max }=Aw\ \Rightarrow Aw=4{ V } _{ w }(given)\ Aw=4\left( \frac { w }{ k }  \right) \ A=\frac { 4 }{ k } \ A=\frac { 4 }{ { 2\pi  }/{ \lambda  } } \ \Rightarrow \lambda =\frac { 2\pi A }{ 4 } =\frac { \pi A }{ 2 } \ \left[ \lambda =\frac { \pi { Y } _{ 0 } }{ 2 }  \right] $
Hence option (B) is correct

One end of a horizontal rope is attached to a prong of an electrically driven tuning fork that vibrates at $120 Hz$. The other end passes over a pulley and supports a $1.50 kg$ mass. The linear mass density of the rope is $0.0550 kg/m$. How wavelength and speed  will change if the mass were increased to $3.00 kg$ ?

  1. both decrease  by $\sqrt{5}$ times.

  2. both increase by $\sqrt{2}$ times.

  3. both increase by $\sqrt{5}$ times.

  4. both decrease  by $\sqrt{2}$ times.


Correct Option: B
Explanation:

Since the mass becomes twice, the tension in the wire becomes twice.

Hence the speed becomes $\sqrt{2}$ times since it varies with tension as $\sqrt{T}$.
$v=\lambda\nu$
Thus the wavelength also becomes $\sqrt{2}$ times the initial value.

The velocity of a transverse wave in a stretched wire is $100ms^{-1}$. If the length of wire is doubled and tension in the string is also doubled, the final velocity of  the transverse wave in the wire is

  1. $100 ms^{-1}$

  2. $141.4 ms^{-1}$

  3. $200 ms^{-1}$

  4. $282.8 ms^{-1}$


Correct Option: B
Explanation:

$v=\sqrt{\dfrac{T}{mass\ per\ unit\ length}}=100\ m/s$
when tension is double $ T$ becomes $2T$ and mass per unit length remains same
so, $v _1 = \sqrt{\dfrac{2T}{mass\ per\ unit\ length}}$
$=\sqrt{2}\times\sqrt{\dfrac T{mass\ per\ unit\ length}}$
$=\sqrt{2}\times 100$
$= 141.4 m/s$

If the vibrations of a string are to be increased by a factor of two, then tension in the string should be made

  1. Twice

  2. Four times

  3. Eight times

  4. Half


Correct Option: B
Explanation:

We know that, $\displaystyle n=\frac {1}{2} \sqrt {\frac {T}{m}} \Rightarrow n \alpha \sqrt {T}$
If tension is increased four times, the frequency will become twice.

A sonometer wire, with a suspended mass of $M=1 kg$, is in resonance with a given tuning fork. The apparatus is taken to the moon where the acceleration due to gravity is $\dfrac 16$ that on earth. To obtain resonance on the moon, the value of $M$ should be

  1. $1 kg$

  2. $\sqrt{6}$ kg

  3. $6 kg$

  4. $36 kg$


Correct Option: C
Explanation:

$f \propto \sqrt{T}=\sqrt{mg}$
$\therefore m _{1}g _{1}=m _{2}g _{2}$
$\Rightarrow (1)g=m\left ( \dfrac{g}{6} \right )$
$\Rightarrow m=6kg$

In an experiment, the string vibrates in $4$ loops when $50 \ gm-wt$ is placed in pan of weight $15 \ gm$. To make the string vibrate in $6$ loops the weight that has to be removed from the pan is approximately :

  1. $72 \ gm$

  2. $36 \ gm$

  3. $21 \ gm$

  4. $29 \ gm$


Correct Option: B
Explanation:

$frequency\propto \dfrac{1}{no\ of\ loops}$
$f _{1}:f _{2}=6:4=3:2$
$f\alpha \sqrt{T}$
$\therefore \dfrac{3}{2}=\sqrt{\dfrac{65}{x}}$
$\dfrac{9}{4}=\dfrac{65}{x}$
$x=\dfrac{260}{9}=29\ gms$
$\therefore$ weight to be removed is $36 gms.$

A uniform wire of length 20 m and weighing 5 kg hangs vertically. If g = 10 m $s^{-2}$, then the speed of transverse waves in the middle of the wire is:

  1. 10 m$s^{-1}$

  2. 10$\sqrt{2}$ m $s^{-1}$

  3. 4 m $s^{-1}$

  4. 2 m $s^{-1}$


Correct Option: A
Explanation:
Here $\mu=\dfrac{5}{20}kg/m=\dfrac{1}{4}kg/m$
Tension in the middle of wire,
$T=$ weight of half the wire $=\dfrac{5}{2}\times g=\dfrac{5}{2}\times 10N=25N$
As,$v=\sqrt{\dfrac{T}{\mu}}$
$\Rightarrow v=\sqrt{\dfrac{25}{1/4}}=10m/s$

If the tension in a sonometer wire is increased by a factor of four. The fundamental frequency of vibration changes by a factor of :

  1. 4

  2. (1/4)

  3. 2

  4. (1/2)


Correct Option: C

The length of a sonometer wire $AB$ is $110 \ cm$. The distance at which two bridges should be placed from $A$ to divide the wire into $3$ segments whose fundamental  frequencies are in the ratio of $1:2:3$ ?

  1. $30 \ cm$

  2. $60 \ cm, 30 \ cm,20 \ cm$

  3. $80\ cm$

  4. $40\ cm, 80\ cm$


Correct Option: B
Explanation:

$f _{1}:f _{2}:f _{3}=1:2:3$
$\Rightarrow \dfrac{1}{l _{1}}:\dfrac{1}{l _{2}}:\dfrac{1}{l _{3}}=1:2:3$
$\Rightarrow l _{1}:l _{2}:l _{3}=6:3:2$
$l _{1}=\left ( \dfrac{6}{2+3+6} \right )\times 110=60\ cm$
$l _{2}=\dfrac{3}{11}\times 110=30\ cm$
$l _{3}=\dfrac{2}{11}\times 110=20\ cm$