Tag: mathematics and statistics

Questions Related to mathematics and statistics

A four year Indira Vikas certificate with a maturity value of Rs. 700 is purcahsed for Rs. 500. The rate $\%$ p.a. is :

  1. $

    9 \dfrac { 1 } { 11 } \%

    $

  2. $10\%$

  3. $11\%$

  4. $

    21 \dfrac { 9 } { 11 } \%

    $


Correct Option: B
Explanation:

Interest $= 200.....(700-500=200)$


$SI=\dfrac{P\times N\times R}{100}$

$200=\dfrac{500 \times R \times 4}{100}\implies R=10\%$

At what rate per cent per annum, will Rs.32000 yield a compound interest of Rs.5044 in 9 months interest being compounded quarterly ?

  1. 25

  2. 23

  3. 20

  4. 18


Correct Option: C
Explanation:
Principal = Rs.32000 
Amount $= Rs.(32000 + 5044) = Rs.37044$
Rate $= r\%$ p.a. or $\displaystyle \cfrac{r}{4}\%$ per quarter 
Time = 9 months = 3 quarters i.e., $n = 3$
$\displaystyle \therefore$ Applying $\displaystyle A=P\left ( 1+\cfrac{r}{100} \right )^{n}$ we have
$\displaystyle 37044=32000\left ( 1+\cfrac{r}{400} \right )^{3}\Rightarrow \cfrac{37044}{32000}=\left ( 1+\cfrac{r}{400} \right )^{3}$
$\displaystyle \Rightarrow \cfrac{9261}{8000}=\left ( 1+\cfrac{r}{400} \right )^{3}\Rightarrow \left ( \cfrac{21}{20} \right )^{3}=\left ( 1+\cfrac{r}{400} \right )^{3}$
$\displaystyle \Rightarrow 1+\cfrac{r}{400}=\cfrac{21}{20}\Rightarrow \cfrac{r}{400}=\cfrac{21}{20}-1=\cfrac{1}{20}\Rightarrow r=\cfrac{400}{20}=20\%p.a.$

At what rate of interest per annum will a sum double itself in 8 years?

  1. $25\%$

  2. $6\frac{1}{4} \%$

  3. $12\frac{1}{2} \%$

  4. None


Correct Option: C
Explanation:

T = 8 years; N = 2; R = ?
R $\times T$ = 100 $\times (N - 1)$


R $\times 8$= 100 $\times (2 - 1)$

$R\, =\, \displaystyle \frac {100}{8}\, =\, 12\frac{1}{2}\, \%$

Simple interest on Rs.2000 for 4 years is Rs.400. Percent rate of interest is

  1. $\displaystyle\frac{2000\times 100}{400\times 4}$

  2. $\displaystyle\frac{400\times 4}{2000\times 100}$

  3. $\displaystyle\frac{400\times 100}{2000\times 4}$

  4. None of these


Correct Option: C
Explanation:

Principal = Rs 2000
Time = 4 years
Interest = Rs 400
Now, $Interest = \frac{Principal \times Rate \times Time}{100}$
$400 = \frac{2000\times R\times 4}{100}$
$R = \frac{400 \times 100}{2000 \times 4}$

At what rate percent per annum will the simple interest on a sum of money be 2/5 of the amount in 10 years?

  1. $4\frac {1}{2}$%

  2. $5\frac {1}{2}$%

  3. 4%

  4. 5%


Correct Option: C
Explanation:

$SI=\frac {2}{5}P, t=10, r=?$
$\frac {Ptr}{100}=\frac {2}{5}P$
or $\frac {10\times r}{100}=\frac {2}{5}$
or $r=\frac {20}{5}=4$%

A person finds that an increase in the rate of interest from $\displaystyle4\frac{7}{8}$% to $\displaystyle5\frac{1}{8}$% per annum increases his yearly income by Rs 30. His capital in rupees is

  1. 15,000

  2. 14,000

  3. 13,000

  4. 12,000


Correct Option: D
Explanation:

increase in rate of interest

$4\frac { 7 }{ 8 } =\frac { 39 }{ 8 } $
$5\frac { 1 }{ 8 } =\frac { 41 }{ 8 } $
$\frac { 41 }{ 8 } -\frac { 39 }{ 8 } =\frac { 2 }{ 8 } $
$\frac { 2 }{ 8 } $% of income is Rs30 of the capital
$1$% of income is $\frac { 8 }{ 2 } \times 30$ of capital
$100$% of income will be$\frac { 8 }{ 2 } \times 30\times 100=12000$
His capital in rupees is 12000

Anil invests Rs 3,000 for a year and Sunil joins him with Rs 2,000 after 4 months. After the year they receive a return of Rs 2,600. Sunil's share is

  1. Rs 800

  2. Rs 1,000

  3. Rs 750

  4. Rs 900


Correct Option: A
Explanation:

$Ratio\quad in\quad which\quad they\quad should\quad share\quad their\quad profits=Raio\quad of\quad investments\times \quad Time\quad period$

$=\frac { 3000\times 12 }{ 2000\times 8 } =\frac { 3\times 3 }{ 2\times 2 } =\frac { 9 }{ 4 } $
Sunils share will be$=\frac { 4 }{ 13 } \times 2600=800$
Sunils share will be Rs800,

The time required so that Rs 450 may increase to Rs 576 (the rate of simple interest being 7% per annum) is

  1. 2 years

  2. 3 years

  3. 4 years

  4. 6 years


Correct Option: C
Explanation:

Simple interest will be(576-450)=Rs126

 Let the Time required  be t
As per formula,
$Simple\quad Interest=\frac { P\times t\times r }{ 100 } $
$126=\frac { 450\times t\times 7 }{ 100 } $
$315t=1260$
$t=\frac { 1260 }{ 315 } =4$
Time required will be 4 years


The _______ is the percentage of a sum of money charged for its use.

  1. principal

  2. interest

  3. rate of interest

  4. amount


Correct Option: C
Explanation:

The rate of interest is the percentage of a sum of money charged for its use.

If the simple interest on a certain sum of money is $\displaystyle \frac{4}{25}$th of the sum and the rate per cent equals the number of years, then the rate of interest per annum is

  1. $2$%

  2. $4$%

  3. $5$%

  4. $6$%


Correct Option: B
Explanation:

$\Rightarrow$   Let the principal be $Rs.x$.

$\Rightarrow$   Then, Simple Interest = $\dfrac{4}{25}x.$
$\Rightarrow$    Let the rate of interest per annum be $r\%$ then time ( T)= $r$ years.
$\Rightarrow$   $R=\dfrac{100\times S.I.}{P\times T}$

$\Rightarrow$   $r=\dfrac{100\times \dfrac {4x}{25}}{x\times r}$

$\Rightarrow$   $r^2=\dfrac{400}{25}$

$\Rightarrow$   $r=\dfrac{20}{5}=4\%$