Tag: mathematics and statistics

Questions Related to mathematics and statistics

If $A \times B = {(3, a), (3, -1), (3, 0), (5, a), (5, -1), (5, 0)}$, find $A$.

  1. ${a, 5}$

  2. ${a, -1}$

  3. ${0, 5}$

  4. ${3, 5}$


Correct Option: D
Explanation:

$A\times B = {(3,a),(3,-1),(3,0),(5,a),(5,-1),(5,0)}$

$A={3,5}$
as we know A is set of all entries in ordered  pair $A\times B$.

$(x, y)$ and $(p, q)$ are two ordered pairs. Find the values of $x$ and $p$, if $(3x - 1, 9) = (11, p + 2)$

  1. $x = 4, p = 9$

  2. $x = 6, p = 7$

  3. $x = 4, p = 5$

  4. $x = 4, p = 7$


Correct Option: D
Explanation:

Given$(x,y)=(p,q)$
$(3x - 1, 9) = (11, p + 2)$
By equating 
$3x - 1 = 11$
$3x = 12$
$x = 4$
$9 = p + 2$
$p = 7$
So, the value of $x = 4, p = 7.$

 $(x, y)$ and $(p, q)$ are two ordered pairs. Find the values of $p$ and $y$, if $(4y + 5, 3p - 1) = (25, p + 1)$

  1. $p = 0, y = 5$

  2. $p = 1, y = 5$

  3. $p = 0, y = 1$

  4. $p = 1, y = 1$


Correct Option: B
Explanation:

Given $(x,y)=(p,q)$
$(4y + 5, 3p - 1) = (25, p + 1)$
On equating we get
$4y + 5 = 25$
$4y = 25 - 5$
$4y = 20$
$y = 5$
$3p - 1 = p + 1$
$3p - p = 1 + 1$
$2p = 2$
$p = 1$
So, the value of$ p = 1, y = 5$

If $A = {2, 3}$ and $B = {1, 2}$, find $A \times B$.

  1. ${(2, 1), (2, 2), (3, 1), (3, 2)}$

  2. ${(2, 1), (2, 1), (3, 1), (3, 2)}$

  3. ${(2, 1), (2, 2), (2, 1), (3, 2)}$

  4. ${2, 1), (2, 2), (3, 1), (2, 2)}$


Correct Option: A
Explanation:

$A= {2,3}$

$B={1,2}$
$A\times B = {2,3} \times {1,2}$
$={(2,1),(2,2),(3,1),(3,2)}$

If $A \times B =$ ${(2, 4), (2, a), (2, 5), (1, 4), (1, a), (1, 5)}$, find $B$.

  1. ${4, 2, 5}$

  2. ${4, a, 5}$

  3. ${4, 1, 5}$

  4. ${2, a, 5}$


Correct Option: B
Explanation:

$ A\times B = {(2,4),(2,a),(2,5),(1,4),(1,a),(1,5)}$

$B={4,a,5}$
as we know B is a set of all second entries in ordered pair $A\times B$.

If A and B are two non-empty sets having n elements in common, then what is the number of common elements in the sets $A\times B$ and $B\times A$?

  1. $n$

  2. $n^2$

  3. $2n$

  4. Zero


Correct Option: B
Explanation:

Say A has x elements and B has y elements in total. 


Their cartesian product $A\times B$ will have $x\times y$ elements.

Hence if they have n elements in common. $n^2$ common elements are present in the products $A\times B$ and $B\times A$

Let $A=\left{ x\in W,the\quad set\quad of\quad whole\quad numbers\quad and\quad x<3 \right} $

$B=\left{ x\in N,the\quad set\quad of\quad natural\quad numbers\quad and\quad 2\le x<4 \right} $ and $C=\left{ 3,4 \right} $, then how many elements will $\left( A\cup B \right) \times C$ conatin?

  1. $6$

  2. $8$

  3. $10$

  4. $12$


Correct Option: B
Explanation:

$A={0,1,2}, B={2,3}$ and $C={3,4}$
$A \cup B={0,1,2,3}$
No. of elements in $(A\cup B)\times C$ $=$ No. of elements in $(A \cup B)\times $ No. of elements in $C$$=4\times 2=8$

Let $A = \left{ a,b,c,d \right}$ and $ B=\left{ x,y,z \right}$. What is the number of elements in $ A\times B$?

  1. $6$

  2. $7$

  3. $12$

  4. $64$


Correct Option: C
Explanation:

Given sets are $A={a,b,c,d}$ and ${x,y,z}$ 

So $A\times B={(a,x),(a,y),(a,z),(b,x),(b,y),(b,z),(c,x),(c,y),(c,z),(d,x),(d,y),(d,z)}$
No. of elements in $A\times B$ is $3\times 4=12$

If $A = \left{ 1,2 \right}$, $B = \left{ 2,3 \right}$ and $ C = \left{ 3,4 \right}$, then what is the cardinality of $ \left( A\times B \right) \cap \left( A\times C \right) $

  1. $8$

  2. $6$

  3. $2$

  4. $1$


Correct Option: C
Explanation:
$A = \left\{ 1,2 \right\}$, $B = \left\{ 2,3 \right\}$ and $ C = \left\{ 3,4 \right\}$

Now, $A\times B=\{ (1,2),(1,3),(2,2),(2,3)\}$ 

$A\times C=\{ (1,3),(1,4),(2,3),(2,4)\} $ And

$ (A\times B)\cap (A\times C)=\{ (1,3),(2,3)\} $

So cardinality is $2$.

Hence, option C is correct.

A and B are two sets having $3$ elements in common. If $n(A)=5, n(B)=4$, then what is $n(A\times B)$ equal to?

  1. $0$

  2. $9$

  3. $15$

  4. $20$


Correct Option: D
Explanation:

If $n(A) =5$ and $n(B) = 4$


For this type cases we know that the formula for the no. of elements in $n(A\times B)$ = $5\times4 = 20$