Tag: mathematics and statistics

Questions Related to mathematics and statistics

If the cardinality of a set $A$ is $4$ and that of a set $B$ is $3$, then what is the cardinality of the set $A\Delta B$.

  1. $1$

  2. $5$

  3. $7$

  4. $Cannot\ be\ determined$


Correct Option: D
Explanation:

$n(A\Delta B)=n(A)+n(B)-n(A\cap B)$

Here we don`t know the $n(A\cap B)$

So the answer cannot be Determined.


Let A and B be two sets such that $A\times B=\left{ \left( a,1 \right) ,\left( b,3 \right) ,\left( a,3 \right) ,\left( b,1 \right) ,\left( a,2 \right) ,\left( b,2 \right)  \right} ,$ then 

  1. $A=\left{ 1,2,3 \right} $ and $B=\left{ a,b \right} $

  2. $A=\left{ a,b \right} $ and$ B=\left{ 1,2,3 \right} $

  3. $A=\left{ 1,2,3 \right} $ and $B\subset \left{ a,b \right} $

  4. $A\subset \left{ a,b \right} $ and $B\subset \left{ 1,2,3 \right} $


Correct Option: B
Explanation:

$A$ is the first  element in  the cartesian product $A\times B=\left{a\,,b\,,a\,,b\,,a\,,b\right}$

and $B$ is the second element in  the cartesian product $A\times B=\left{1,\,3\,,3\,,1\,,2\,,2\right}$
$\therefore$ elements of $A=\left{a,b\right}$ and $B=\left{1\,,2\,,3\right}$

If $(x, y) = (3, 5)$ ; then values of $x$  and $y $ are 

  1. 3 and 5

  2. 4 and 7

  3. -1 and 17

  4. 2 and 4


Correct Option: A
Explanation:

x has to be 3 and y has to be 5.

State whether the following statement is True or False.
If (x, y) = (3, 5) ; then x= 3 and y = 5

  1. True

  2. False


Correct Option: A
Explanation:

By rule of ordered pairs this statement is true.

If $n(A) = 4$ and $n(B) = 5$, then $n(A \times  B) = $

  1. $20$

  2. $25$

  3. $4$

  4. $15$


Correct Option: A
Explanation:

Given, $n\left( A \right) =4$ and $n\left( B \right) =5$ 

$ \Rightarrow n\left( A\times B \right) =n\left( A \right) \cdot n\left( B \right) $ 
$\Rightarrow  n(A\times B)=4\cdot 5=20$ 
So, answer is $20$.

State True or False
Let $A = \{1, 2\}$ and $B = \{2, 3, 4\}$, then A $\times$ B = B $\times$ A ?
  1. True

  2. False


Correct Option: B
Explanation:

Product of two sets is the set of ordered pairs formed by mapping every element from the first set to every element of the second set.

So, $ A \times B = $ { $ (1,2), (1,3), (1,4), (2,2), (2,3), (2,4) $ }

And $ B \times A = $ { $ (2,1), (2,2), (3,1), (3,2), (4,1), (4,2) $ }

Clearly, $ A \times B \neq B \times A $

If $A=\left{ 2,4,5 \right} , B=\left{ 7,8,9 \right} $ then $n(A\times B)$ is equal to-

  1. $6$

  2. $9$

  3. $3$

  4. $0$


Correct Option: B
Explanation:

Given $n(A)=3,$  and $n(B) =3$
Hence $n(A\times B) = 3\times 3=9$

If $A = \left{2,3\right}$ and $B = \left{1,2\right}$, then $A \times B$ is equal to 

  1. $\left{(2,1), (2,2), (3,1), (3,2)\right}$

  2. $\left{(1,2), (1,3), (2,2), (2,3)\right}$

  3. $\left{(2,1), (3,2)\right}$

  4. $\left{(1,2), (2,3)\right}$


Correct Option: A
Explanation:

If $A$ and $B$ are any two non-empty sets.
then $A\times B$$=\left{(x,y):x\in A  and  y\in B\right}$
As $A = \left{2,3\right}$ and $B = \left{1,2\right}$
$A \times B$$=\left{(2,1), (2,2), (3,1), (3,2)\right}$
Hence, option A.

If $\displaystyle A=\left{ 2,4,5 \right} ,B=\left{ 7,8,9 \right} $ then $\displaystyle n\left( A \times B \right) $ is equal to

  1. $6$

  2. $9$

  3. $3$

  4. $0$


Correct Option: B
Explanation:

$\displaystyle A=\left{ 2,4,5 \right} ,B=\left{ 7,8,9 \right} $

$\Rightarrow n(A)=3$  and  $n(B)=3$

$\therefore  n(A\times B)=n(A)n(B)=9$

Hence, option B.

If $\displaystyle n\left ( A\times B \right )=36$ then n(A) can possibly be____

  1. $7$

  2. $8$

  3. $9$

  4. $10$


Correct Option: C
Explanation:

$n(A\times B)=n(A)\times n(B)$


Hence $n(A)$ must be a factor of $36$. only possible answer is $B:9$