Tag: perimeter, area and volume

Questions Related to perimeter, area and volume

General formula of volume of a prism is:

  1. Area of base $\times$ height

  2. Area of triangle $\times$ height

  3. Area of square $\times$ height

  4. Area of rectangle $\times$ height


Correct Option: A
Explanation:

The volume of a general 3d figure is simply = Area of  Base $\times$ Its height.

This applies for prism also.

If base and height of a prism and pyramid are same, then the volume of a pyramid is:

  1. $\dfrac{1}{3}\times$ Volume of prism

  2. ${3}\ \times$ Volume of prism

  3. $\dfrac{1}{2}\times$ Volume of prism

  4. $2\ \times$ Volume of prism


Correct Option: A
Explanation:

If a pyramid and a prism have the same base and height, their volumes are always in the ratio of $1:3\times $Volume of prism.  

General formula to find volume of a pyramid is:

  1. $\dfrac{\text{Base Area} \times \text{Height}}{2}$

  2. $2(\text{Base Area} \times \text{Height})$

  3. $\dfrac{\text{Base Area} \times \text{Height}}{3}$

  4. $3(\text{Base Area} \times \text{Height})$


Correct Option: C
Explanation:

Pyramid is a structure whose outer surfaces are triangular and converge to a 

single point at the top.

Its base is a polygon i.e triangle, rectangle, pentagon etc.

So, volume is found by finding area of its base times height 

$\therefore$ Volume of a pyramid $=\dfrac{\text{Base Area} \times \text{Height}}{3}$

The base of the right pyramid is a square of side 16 cm and height 15 cm. Its volume $(cm^{3})$ will be

  1. $3840$

  2. $1920$

  3. $1280$

  4. $960$


Correct Option: C
Explanation:

Area of the base $=$ $(16 \times 16) cm^2$
Volume of the pyramid $=$ $\frac{1}{3} \times B h$
Volume of the pyramid $=$ $\frac{1}{3}\left ( 16\times 16 \right )\times 15$
$= 1280 cm^2$

The base of a right pyramid is an equilateral triangle of perimeter $8$ dm and the height of the pyramid is $30$$\sqrt{3}$ cm. The volume of the pyramid is

  1. $1600$ cm$^{3}$

  2. $16000$ cm$^3$

  3. $\displaystyle \frac{16000}{3} cm^3$

  4. $\displaystyle \frac{5}{4} cm^3$


Correct Option: B
Explanation:
Base of pyramid is an equilateral triangle of parameter
$8dm=80cm$
Let the side of the equilateral triangle be $'a'cm$
$\therefore $Parameter of equilateral triangle$=3a$
$\Rightarrow 3a=80\Rightarrow a=\cfrac { 80 }{ 3 } cm$
Height of pyramid$=30\sqrt { 3 } cm$
Volume of pyramid=Area of base $\times $ height
$=\cfrac { \sqrt { 3 }  }{ 4 } { a }^{ 2 }\times 30\sqrt { 3 } $

$=\cfrac { \sqrt { 3 }  }{ 4 } \times \cfrac { 80 }{ 3 } \times \cfrac { 80 }{ 3 } \times 30\sqrt { 3 } $

$=\cfrac { 3 }{ 4 } \times \cfrac { 80 }{ 3 } \times 80 \times 10 $

$=\cfrac { 1 }{ 4 } \times 80 \times 80 \times 10 $

$=20 \times 80 \times 10 $

$=16000cm^3$

If the areas of the adjacent faces of a rectangular block are in the ratio $2:3:4$ and its volume is $9000{cm}^{3}$, then the length of the shortest edge is

  1. $30cm$

  2. $20cm$

  3. $15cm$

  4. $10cm$


Correct Option: C
Explanation:

Let the edge of the cuboid be $a\,cm,\,b\,cm$ and $c\,cm$.

And, $a<b<c$
The areas of the three adjacent faces are in ratio $2:3:4$
So,
$ab:ca:bc=2:3:4$ and its volume is $9000\,cm^3$
We have to find the shortest edge of the cuboid
Since,
$\dfrac{ab}{bc}=\dfrac{2}{4}$

$\dfrac{a}{c}=\dfrac{1}{2}$

$\therefore$  $c=2a$
Similarly,
$\dfrac{ca}{bc}=\dfrac{3}{4}$

$\dfrac{a}{b}=\dfrac{3}{4}$

$\therefore$  $b=\dfrac{4a}{3}$

Volume of cuboid,
$V=abc$
$\Rightarrow$  $9000=a\left(\dfrac{4a}{3}\right)(2a)$

$\Rightarrow$  $27000=8a^3$

$\Rightarrow$  $a^3=\dfrac{27\times 1000}{8}$

$\Rightarrow$  $a=\dfrac{3\times 10}{2}$

$\therefore$  $a=15\,cm$
Now, $b=\dfrac{4a}{3}=\dfrac{4\times 15}{3}=20$
$c=2a=2\times 15=30\,cm$
$\therefore$  The length of the shortest edge is $15\,cm.$

A right pyramid is on a regular hexagonal base. Each side of the base is 10 m. Its height is 60 m.The volume of the pyramid is

  1. 5196 $m^3$

  2. 5200 $m^3$

  3. 5210 $m^3$

  4. 51220$m^3$


Correct Option: A
Explanation:

Volume of pyramid $= \displaystyle \frac{1}{3}$ [Area of hexagonal base of side 10 m $\times$ Height]
$= \displaystyle \frac{1}{3} \left [ \frac{3 \sqrt 3}{4} (10)^2 \times 60 \right ] = 5196 m^3$.

A right pyramid on a regular hexagonal base is of height $60$ m. Each side of the base is $10$ m. The volume of the pyramid is

  1. $\displaystyle 4500\ \text{m}^{3}$

  2. $\displaystyle 5000\ \text{m}^{3}$

  3. $\displaystyle 5196\ \text{m}^{3}$

  4. $\displaystyle 6196\ \text{m}^{3}$


Correct Option: C
Explanation:

Volume of the pyramid
$\displaystyle =\frac{1}{3}\times $ base area $\displaystyle \times $height
$\displaystyle =\frac{1}{3}\times \left ( \frac{3}{2}\sqrt{2}\times 10^{2} \right )\times 60m^{2}$,
since $\displaystyle \sqrt{3}=1.732$
=$\displaystyle =5196m^{3}$

A regular square pyramid is $3$ m height and the perimeter of its base is $16$ m. Find the volume of the pyramid.

  1. 1212 $cu. m$

  2. 1414 $cu. m$

  3. 1616 $cu. m$

  4. 1818 $cu. m$


Correct Option: C
Explanation:

Given, height of regular square pyramid is $3$ m and the perimeter of its base is $16$ m

Let the base side of pyramid is $l$ m
Then perimeter of base $=4a=16$
So, $ a=4$
Then volume of pyramid $=$ $\dfrac{1}{3}l^{2}h=\dfrac{1}{3}\times (4)^{2}\times 3=16 $ $cu. m$

The altitude of the frustum of a regular rectangular pyramid is $5\ m$ the volume is $140\ cu.\ m.$ and the upper base is $3\ m$ by $4\ m$. What are the dimensions of the lower base in $m$?

  1. $9\times10$

  2. $6\times8$

  3. $4.5\times6$

  4. $7.5\times10$


Correct Option: B
Explanation:

Given : Height of pyramid$(h)=5\ m$, Volume$(V)=140\ cu. m$

Edge of upper base are $length(L)=3\ m, breadth(B)=4\ m$
And let $l,h$ be the length and height of lower base

$\therefore$ Area of upper base$(A _{1})=L\times B=3\times 4 = 12\ m^2$
And Area of lower base$A _{2}=l\times b$
Volume of frustum$(V)=\dfrac{h}{3}(A _{1} + A _2 + \sqrt{A _1 \times A _2})$
$\implies$$140=\dfrac{5}{3}(12 + A _2 + \sqrt{12 \times A _2})$
$\implies 84=A _2 + 12 + \sqrt{12}\ \sqrt{A _2}$
$\implies A _2+\sqrt{12}\ \sqrt{A _2}-72=0$
$\implies \left(\sqrt{A _2} + \dfrac{\sqrt{12}}{2}\right)^2 - \dfrac{12}{4} - 72=0$
$\implies \left(\sqrt{A _2} + \dfrac{\sqrt{12}}{2}\right)^2 =75$
$\implies \left(\sqrt{A _2} + \dfrac{\sqrt{12}}{2}\right) =\sqrt{75}$
$\implies \sqrt{A _2}=6.928$
$\therefore A _2 = 47.9971=48\ m^2=6\times 8$ 
Hence, dimensions of lower base is $6 \times 8$.