Tag: maths
Questions Related to maths
Given $z$ is a complex number with modulus $1$. Then the equation $\dfrac{(1+ia)}{(1-ia)}$ = $z$ has
-
all roots real and distinct
-
two real and one imaginary
-
three roots real and one imaginary
-
one root real and three imaginary
$\displaystyle { \left( \frac { 1+ia }{ 1-ia } \right) }^{ 4 }=z\quad $ ...(1)
$\displaystyle & \quad \left| z \right| =1$
$\displaystyle z=cisA=\cos { A } +i\sin { A } $
Substitute $z$ in equation (1)
$\displaystyle { \left( \frac { 1+ia }{ 1-ia } \right) }={ cisA }^{ \frac { 1 }{ 4 } }=cis\frac { 2k\pi +A }{ 4 } $ ...{De Moivre's Theorem}
where $ k=0,1,2,3$
Let $\displaystyle B=\frac { 2k\pi +A }{ 4 } $
$\displaystyle \Longrightarrow ia=\frac { -1+cisB }{ 1+cisB } =\frac { \sin { \frac { B }{ 2 } \left( i\cos { \frac { B }{ 2 } } -\sin { \frac { B }{ 2 } } \right) } }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 } } +i\sin { \frac { B }{ 2 } } \right) } } $
$\displaystyle \Longrightarrow ia=\frac { i\sin { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 } } +i\sin { \frac { B }{ 2 } } \right) } }{ \cos { \frac { B }{ 2 } \left( \cos { \frac { B }{ 2 } } +i\sin { \frac { B }{ 2 } } \right) } } $
$\displaystyle \Longrightarrow a=\tan { \frac { B }{ 2 } } $
Therefore roots are real and distinct.
Ans: A
If n is a natural number$ \ge$ 2, such that $z^n = (z+ 1)^n$, then
-
roots of equation lie on a straight line parallel to the y-axis
-
roots of equation lie on a straight line parallel to the x-axis
-
sum of the real parts of the roots is -[(n-1)/2]
-
none of these
$\displaystyle { z }^{ n }={ \left( z+1 \right) }^{ n }$ where, $n\ge 2$ ...(1)
$\displaystyle \Rightarrow { \left( \frac { z+1 }{ z } \right) }^{ n }=1=\cos { 0 } +i\sin { 0 } $
$\displaystyle \Rightarrow \frac { z+1 }{ z } ={ \left( \cos { 0 } +i\sin { 0 } \right) }^{ \frac { 1 }{ n } }$
$\displaystyle \Rightarrow \frac { z+1 }{ z } =\cos { \frac { 2k\Pi }{ n } } +i\sin { \frac { 2k\Pi }{ n } } $ ...{De Moivre's Theorem}
$\displaystyle \Rightarrow z=\frac { -1 }{ 1-\cos { \frac { 2k\Pi }{ n } } -i\sin { \frac { 2k\Pi }{ n } } } \quad =\frac { -1 }{ 2\sin { \frac { k\Pi }{ n } \left( \sin { \frac { k\Pi }{ n } -i } \cos { \frac { k\Pi }{ n } } \right) } } =\frac { -1\left( \sin { \frac { k\Pi }{ n } +i } \cos { \frac { k\Pi }{ n } } \right) }{ 2\sin { \frac { k\Pi }{ n } } } $
$\displaystyle \Rightarrow z=\frac { -\left( 1+i\cot { \frac { k\Pi }{ n } } \right) }{ 2 } $
Where$ k=1,2,3,....,n-1 $ ..{Since at k=0, z is not defined}
$\because \quad Re\left( z \right) $ is constant.
Therfore roots of ${ z }^{ n }={ \left( z+1 \right) }^{ n }$ lie on straight line parellel to y-axis.
$\displaystyle \because \quad z=\frac { -\left( 1+i\cot { \frac { k\Pi }{ n } } \right) }{ 2 } $ and $k=1,2,3,....,(n-1)$
Sum of $\displaystyle Re\left( z \right) $= $-\frac { \left( n-1 \right) }{ 2 } $.
Ans: A,C
For positive integers $\displaystyle n _{1}$ and $\displaystyle n _{2}$ the value of the expression $\displaystyle (1+i)^{n _{1}}+(1+i^{3})^{n _{1}}+(1+i^{5})^{n _{2}}+(1+i^{2})^{n _{2}}$ where
$\displaystyle i= \sqrt{-1}$ is a real number iff
-
$\displaystyle n _{1}= n _{2}$
-
$\displaystyle n _{2}= n _{2}-1$
-
$\displaystyle n _{1}= n _{2}+1$
-
$\displaystyle \forall n _{1}$ and $\displaystyle n _{2}$
$(1+i)^{n _{1}} = $ $ ^{n _{1}}C _{0} + ^{n _{1}}C _{1} i +^{n _{1}}C _{2} i^2 + ......+^{n _{1}}C _{n _{1}} i^{n _{1}}$ --------(1)
If ${ x }^{ 6 }={ \left( 4-3i \right) }^{ 5 }$, then the product of all of its roots is (where $\displaystyle \theta =-\tan ^{ -1 }{ \frac { 3 }{ 4 } } $)
-
${ 5 }^{ 5 }\left( \cos { 5\theta } +i\sin { 5\theta } \right) $
-
$-{ 5 }^{ 5 }\left( \cos { 5\theta } +i\sin { 5\theta } \right) $
-
${ 5 }^{ 5 }\left( \cos { 5\theta } -i\sin { 5\theta } \right) $
-
$-{ 5 }^{ 5 }\left( \cos { 5\theta } -i\sin { 5\theta } \right) $
$\displaystyle { x }^{ 6 }={ \left( 4-3i \right) }^{ 5 }\Rightarrow { x }^{ 6 }={ 5 }^{ 6 }\left( \frac { 4 }{ 5 } -\frac { 3i }{ 5 } \right) ={ 5 }^{ 5 }{ \left( \cos { \theta } +i\sin { \theta } \right) }^{ 5 }$
If $C _{o},C _{1},C _{2}...C _{n}$ are the Binomial coefficient in the expansion of $\left ( 1+x \right )^{n}$ then which is not correct
-
$C _{0}-C _{2}+C _{4}-C _{6}+...=2\tfrac{n}{2}\cos \frac{n\pi }{4}$
-
$C _{1}-C _{3}+C _{5}+...=2\tfrac{n}{2}\sin \frac{n\pi }{4}$
-
$C _{1}+C _{5}+C _{9}+C _{13}+...=\tfrac{1}{2}\left ( 2^{n-1}+2\tfrac{n}{2}\sin \frac{n\pi }{4} \right )$
-
None of these
By Binomial theorem
${ \left( 1+x \right) }^{ n }={ C } _{ 0 }+{ C } _{ 1 }x+{ C } _{ 2 }{ x }^{ 2 }+{ C } _{ 3 }{ x }^{ \ 3 }+{ C } _{ 4 }{ x }^{ 4 }+...$ ...(1)
Substitute $x=i$ in equation (1), we get
$\Rightarrow { \left( 1+i \right) }^{ n }={ C } _{ 0 }+{ C } _{ 1 }i-{ C } _{ 2 }-{ C } _{ 3 }i+{ C } _{ 4 }+.....$ ...(2)
Substitute $x=-i$ in equation (1), we get
${ \left( 1-i \right) }^{ n }={ C } _{ 0 }-{ C } _{ 1 }i-{ C } _{ 2 }+{ C } _{ 3 }i+{ C } _{ 4 }+.....$ ...(3)
Adding (2) & (3), we have
$\Rightarrow 2\left( { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+.... \right) ={ \left( 1+i \right) }^{ n }+{ \left( 1-i \right) }^{ n }$
$\Rightarrow { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+....=\dfrac { { \left( 1+i \right) }^{ n }+{ \left( 1-i \right) }^{ n } }{ 2 } ={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { { \left( \cos { \dfrac { \pi }{ 4 } } +i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n }+{ \left( \cos { \dfrac { \pi }{ 4 } } -i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n } }{ 2 } \right) $
$\Rightarrow { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+....={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { \cos { \dfrac { n\pi }{ 4 } } +i\sin { \dfrac { n\pi }{ 4 } +\cos { \dfrac { n\pi }{ 4 } } -i\sin { \dfrac { n\pi }{ 4 } } } }{ 2 } \right) $
$\Rightarrow { C } _{ 0 }{ -C } _{ 2 }{ +C } _{ 4 }+....={ 2 }^{ \dfrac { n }{ 2 } }\cos { \dfrac { n\pi }{ 4 } } $
Subtracting (2) & (3), we have
$\Rightarrow 2i\left( { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+.... \right) ={ \left( 1+i \right) }^{ n }-{ \left( 1-i \right) }^{ n }$
$\Rightarrow { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+....=\dfrac { { \left( 1+i \right) }^{ n }-{ \left( 1-i \right) }^{ n } }{ 2i } ={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { { \left( \cos { \dfrac { \pi }{ 4 } } +i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n }-{ \left( \cos { \dfrac { \pi }{ 4 } } -i\sin { \dfrac { \pi }{ 4 } } \right) }^{ n } }{ 2i } \right) $
$\Rightarrow { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+....={ 2 }^{ \dfrac { n }{ 2 } }\left( \dfrac { \cos { \dfrac { n\pi }{ 4 } } +i\sin { \dfrac { n\pi }{ 4 } -\cos { \dfrac { n\pi }{ 4 } } +i\sin { \dfrac { n\pi }{ 4 } } } }{ 2i } \right) $
$\Rightarrow { C } _{ 1 }{ -C } _{ 3 }{ +C } _{ 5 }+.....={ 2 }^{ \dfrac { n }{ 2 } }\sin { \dfrac { n\pi }{ 4 } } $ ...(4)
Substitute $x=1$ in equation (1), we get
$\Rightarrow { C } _{ 0 }+{ C } _{ 1 }{ +C } _{ 2 }+{ C } _{ 3 }+{ C } _{ 4 }+.....\quad ={ 2 }^{ n }$ ...(5)
Substitute $x=-1$ in equation (1), we have
$\ \Rightarrow { C } _{ 0 }{ -C } _{ 1 }{ +C } _{ 2 }-{ C } _{ 3 }+{ C } _{ 4 }+.....\quad =0$ ...(6)
Subtracting (5) & (6), we get
$\Rightarrow 2\left( { C } _{ 1 }+{ C } _{ 3 }+{ C } _{ 5 }+..... \right) ={ 2 }^{ n }$
$\Rightarrow { C } _{ 1 }+{ C } _{ 3 }+{ C } _{ 5 }+.....\quad ={ 2 }^{ n-1 }$ ...(7)
Adding (4) & (7), we get
$\Rightarrow 2\left( { C } _{ 1 }+{ C } _{ 5 }+{ C } _{ 9 }+..... \right) ={ 2 }^{ n-1 }+{ 2 }^{ \dfrac { n }{ 2 } }\sin { \dfrac { n\pi }{ 4 } } $
$\Rightarrow { C } _{ 1 }+{ C } _{ 5 }+{ C } _{ 9 }+.....=\dfrac { 1 }{ 2 } \left( { 2 }^{ n-1 }+{ 2 }^{ \dfrac { n }{ 2 } }\sin { \dfrac { n\pi }{ 4 } } \right) $
Hence, option 'D' is correct.
If $ x+\dfrac{1}{x}=2\cos \theta \ and \ y+\dfrac{1}{y}=2\cos \phi$ then which of the following is not correct?
-
$\displaystyle \frac{x}{y} +\frac{y}{x}=2\cos \left ( \theta -\phi \right )$
-
$x^{m}y^{n}=\cos \left ( m\theta +n\phi \right )+i\sin \left ( m\theta +n\phi \right )$
-
$x^{m}y^{n}+x^{-m}y^{-n}=2\cos \left ( m\theta +n\phi \right )$
-
None of these
$x+\dfrac { 1 }{ x } =2\cos { \theta } \quad & \quad y+\dfrac { 1 }{ y } =2\cos { \phi } \ $
$\Rightarrow x=\cos { \theta } +i\sin { \theta } =cis\theta \ \quad & \quad y=\cos { \phi } +i\sin { \phi } =cis\phi \ $
$\dfrac { x }{ y } +\dfrac { y }{ x } =\dfrac { cis\theta }{ cis\phi } +\dfrac { cis\phi }{ cis\theta } =cis\left( \theta -\phi \right) +cis\left( -\theta +\phi \right) $
$\therefore \quad \dfrac { x }{ y } +\dfrac { y }{ x } =2\cos { \left( \theta -\phi \right) } $
${ x }^{ m }{ y }^{ n }={ \left( cis\theta \right) }^{ m }{ \left( cis\phi \right) }^{ n }=\left( cism\theta \right) \left( cisn\phi \right) $ ...{ De Moivre's Theorem}
$\therefore \quad { x }^{ m }{ y }^{ n }=cis\left( m\theta +n\phi \right) =\cos { \left( m\theta +n\phi \right) } +i\sin { \left( m\theta +n\phi \right) } $
${ x }^{ -m }{ y }^{ -n }={ \left( cis\theta \right) }^{ -m }{ \left( cis\phi \right) }^{ -n }=\left( cis\left( -m\theta \right) \right) \left( cis\left( -n\phi \right) \right) \ \therefore \quad { x }^{ -m }{ y }^{ -n }=cis\left( -m\theta -n\phi \right) =\cos { \left( m\theta +n\phi \right) } -i\sin { \left( m\theta +n\phi \right) } \ $
$\therefore \quad { x }^{ m }{ y }^{ n }+{ x }^{ -m }{ y }^{ -n }=2\cos { \left( m\theta +n\phi \right) } $
Let $\mathrm{z}=\cos\theta+\mathrm{i}\sin\theta$. Then the value of $\displaystyle \sum _{\mathrm{m}=1}^{15}{\rm Im}(\mathrm{z}^{2\mathrm{m}-1})$ at $\theta =2^{\mathrm{o}}$ is
-
$\displaystyle \frac{1}{\sin 2^{\mathrm{o}}}$
-
$\displaystyle \frac{1}{3\sin 2^{\mathrm{o}}}$
-
$\displaystyle \frac{1}{2\sin 2^{\mathrm{o}}}$
-
$\displaystyle \frac{1}{4\sin 2^{\mathrm{o}}}$
$\mathrm{z}=\cos\theta+\mathrm{i}\sin\theta$
$\Rightarrow z^{2m-1} = \cos(2m-1)\theta+i\sin (2m-1)\theta$
Let $X = \displaystyle \sum _{\mathrm{m}=1}^{15}{\rm Im}(\mathrm{z}^{2\mathrm{m}-1})$
$\therefore \mathrm{X}=\sin\theta+\sin 3\theta+\ldots+\sin 29\theta$
$\Rightarrow 2(\sin\theta)\mathrm{X}=1-\cos 2\theta+\cos 2\theta-\cos 4\theta+\ldots+\cos 28\theta-\cos 30\theta$
$\displaystyle \therefore \mathrm{X}=\frac{1-\cos 30\theta}{2\sin\theta}=\frac{1}{4\sin 2^{\mathrm{o}}}$
The given table shows the average temperature of some cities of India in a particular month.
City | Average maximum temperature | Average minimum temperature |
---|---|---|
New Delhi | $39^oC$ | $27^o$ |
Mumbai | $36^oC$ | $19^oC$ |
Ahemdabad | $37^oC$ | $19^oC$ |
Chennai | $42^oC$ | $26^oC$ |
Kolkata | $38^oC$ | $24^oC$ |
Which city has the highest difference its average maximum temperature and average minimum temperature?
-
Kolkata
-
Mumbai
-
Chennai
-
Ahemdabad
Jenny has $4$ red roses and $5$ yellow roses. How many roses does Jenny have in all
-
$7$
-
$4$
-
$5$
-
$9$
$Total >roses =4+5=9$
Shraddha needs $6$ containers which can hold $15600$ oil. Find the capacity of each container.
-
$2500$
-
$2600$
-
$3200$
-
$152100$
$6$ containers can hold $15600$ amount of oil