Tag: maths

Questions Related to maths

$(3,2)$ lies _______  the ellipse $16 x^{2} + 9y^{2} - 16x - 32 = 0$

  1. Inside

  2. Outside

  3. On

  4. None of the above


Correct Option: B
Explanation:

Ellipse : $16{ x }^{ 2 }+9{ y }^{ 2 }-16x-32=0$

Let $S=16{ x }^{ 2 }+9{ y }^{ 2 }-16x-32$
Putting point (3,2) in S we get
         S(3,2) $=16\times { (3) }^{ 2 }+9\times { (2) }^{ 2 }-16\times 3-32$
                   $=144+36-48-32$
                   $=180-80$
                   $=100$
          $S(3,2) > 0$
Hence, point lies outside ellipse.

The point $(1,1)$ lies ____________ the ellipse $\dfrac{x^2}{4}+\dfrac{y^2}{9}=1$

  1. outside

  2. inside

  3. on the periphery

  4. on the auxillary circle


Correct Option: B
Explanation:

We will substitute the given point in ellipse equation

$\Rightarrow$ $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{9}-1$
$=\dfrac{1}{4}+\dfrac{1}{9}-1$
$\Rightarrow  \dfrac{13}{36}-1$
$\Rightarrow \dfrac{-23}{36}<0$

By Substituting the point, we are getting less than $0$ 

$\therefore $ point lies inside the ellipse .

The distance of a point $(\sqrt 6 \cos \theta, \sqrt 2 \sin \theta)$ on the ellipse $\dfrac {x^2}{6} + \dfrac {y^2}{2}=1$ from the centre is $2$, if:

  1. $\theta =\dfrac {\pi}{2}$

  2. $\theta =\dfrac {3\pi}{2}$

  3. $\theta =\dfrac {5\pi}{2}$

  4. $\theta =  \dfrac{\pi}{4}$


Correct Option: D
Explanation:

$P(\sqrt { 6 } \cos { \theta  } ,\sqrt { 2 } \sin { \theta  } )$

$Centre(0,0)$
$PC=\sqrt { 6\cos ^{ 2 }{ \theta  } +2\sin ^{ 2 }{ \theta  }  } $
$2=\sqrt { 4\cos ^{ 2 }{ \theta  } +2 } $
$2=4\cos ^{ 2 }{ \theta  } $
$\cos { \theta  } =\pm \dfrac { 1 }{ \sqrt { 2 }  } $
$\theta =\dfrac { \pi  }{ 4 } $

State the following statement is True or False
Let $\dfrac {x^2}{9}+\dfrac{y^2}{16}=1$ then
$(\sqrt 2,\sqrt {24})$ is inside the given ellipse.

  1. True

  2. False


Correct Option: B
Explanation:

Equation of ellipse,  $\dfrac { { x }^{ 2 } }{ 9 } +\dfrac { { y }^{ 2 } }{ 16 } =1$

Putting point $\left( \sqrt { 2 } ,\sqrt { 24 }  \right) $ in equation of ellipse
     $=\dfrac { 2 }{ 9 } +\dfrac { 24 }{ 16 } -1$
     $=\left( \dfrac { 31 }{ 18 } -1 \right) >0$
Hence point lies outside ellipse.
False

Let $\dfrac {(x-3) ^2}9+\dfrac {(y-4) ^2}{16}=1$ then   $(0,0)$ is

  1. On the ellipse.

  2. Outside the ellipse.

  3. Inside the ellipse.

  4. None of the above.


Correct Option: B
Explanation:

Equation of ellipse : $\dfrac { { \left( x-3 \right)  }^{ 2 } }{ 9 } +\dfrac { { \left( y-4 \right)  }^{ 2 } }{ 16 } -1=0$

putting point (0,0) in above ellipse,
          $=\dfrac { { \left( -3 \right)  }^{ 2 } }{ 9 } +\dfrac { { \left( -4 \right)  }^{ 2 } }{ 16 } -1$
          $=1+1-1$
          $=1>0$
Hence, point lies outside ellipse.

Let $5x^2+7y^2=140$, then $(3,-4)$ is:

  1. Outside the ellipse

  2. Inside the ellipse

  3. On the ellipse

  4. Data insufficient


Correct Option: A
Explanation:

Equation of ellipse :   ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$

putting point $(3,-4)$ in equation of ellipse
     $=5\times { 3 }^{ 2 }+7{ \left( -4 \right)  }^{ 2 }-140$
     $=45+112-140$
     $=17(>0)$
Hence, $(3,-4)$ is outside the ellipse.

Let $5x^2+7y^2=140$, then Position of $(4,-3)$ relative to the ellipse is

  1. Inside the ellipse.

  2. Outside the ellipse.

  3. On the ellipse.

  4. None of the above.


Correct Option: B
Explanation:

Equation of ellipse : ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$

putting point (4,3) in equation
     $=5\times { \left( 4 \right)  }^{ 2 }+7{ \left( -3 \right)  }^{ 2 }-140$
     $=80+63-140$
     $=3\left( >0 \right) $
Hence, point is outside the ellipse.

Let $\dfrac {(x-3) ^2}9+\dfrac {(y-4) ^2}{16}=1$ then   $(3,4)$ is 

  1. Inside the ellipse

  2. Outside the ellipse

  3. On the ellipse

  4. Centre of the ellipse


Correct Option: A,D
Explanation:

If equation of ellipse is $\dfrac { { \left( x-h \right)  }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { \left( y-k \right)  }^{ 2 } }{ { b }^{ 2 } } =1$,  centre $\left( h,k \right) $

for ellipse   $\dfrac { { \left( x-3 \right)  }^{ 2 } }{ 9 } +\dfrac { { \left( y-4 \right)  }^{ 2 } }{ 16 } =1$
            Centre of ellipse (3,4)
and centre is inside ellipse only.

Let $5x^2+7y^2=140$, then $(0,0)$ is: 

  1. Inside the ellipse

  2. On the ellipse

  3. Outside the ellipse

  4. Centre of the ellipse


Correct Option: A,D
Explanation:

Equation of ellipse    ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$

   Dividing both sides by $140$
           $\dfrac { { x }^{ 2 } }{ 28 } +\dfrac { { y }^{ 2 } }{ 20 } =1$
Comparing with $\dfrac { { \left( x-h \right)  }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { \left( y-k \right)  }^{ 2 } }{ { b }^{ 2 } } =1$
          $(h,k)\ =\ (0,0)$
Hence (0,0) is centre of given ellipse and it inside the ellipse.

Let $5x^2+7y^2=140$, then $(\sqrt {14},\sqrt {10})$ is:

  1. Outside the ellipse

  2. Inside the ellipse

  3. On the ellipse

  4. Centre of the ellipse


Correct Option: C
Explanation:

          ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$          (equation of ellipse)

putting $\left( \sqrt { 14 } ,\sqrt { 10 }  \right) $ in equation
            $=5\times { \left( \sqrt { 14 }  \right)  }^{ 2 }+7\times { \left( \sqrt { 10 }  \right)  }^{ 2 }-140$
            $=70+70-140$
            $=0$
Hence, point lie on the ellipse.