Tag: maths

Questions Related to maths

The number of normals to the ellipse $\dfrac { { x }^{ 2 } }{ 25 } +\dfrac { { y }^{ 2 } }{ 16 } =1$ which are tangents to the circle ${ x }^{ 2 }+{ y }^{ 2 }=9$ is

  1. 1

  2. 2

  3. 3

  4. 0


Correct Option: A

The equation of the normal to the ellipse $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ at the end of latus rectum in quadrant $1^{st}$ and $4^{th}$ is

  1. $x-ey-ae^3=0$

  2. $x+ey-ae^3=0$

  3. $y-ex-be^3=0$

  4. $y+ex-be^3=0$


Correct Option: A,B
Explanation:

Ellipse:$\cfrac { { x }^{ 2 } }{ a^{ 2 } } +\cfrac { { y }^{ 2 } }{ { b^{ 2 } } } =$

ends of L.R in 1st and 4th quadrant is $L(ae,\cfrac { b^{ 2 } }{ a } )$ and $L'(ae,\cfrac { -b^{ 2 } }{ a } )$
equation of normal at $L$ and $L'$
at $L$, $\Rightarrow \cfrac { a^{ 2 }x }{ ae } -\cfrac { b^{ 2 }y }{ \cfrac { b^{ 2 } }{ a }  } =a^{ 2 }-b^{ 2 }$
$ \Rightarrow ax-aey=e(a^{ 2 }-b^{ 2 })$
$ \Rightarrow x-ey=\cfrac { a^{ 2 } }{ a } (e^{ 2 })(e)$
$ \Rightarrow x-ey-ae^{ 3 }=0---(i)$
at $L'$ $\Rightarrow \cfrac { a^{ 2 }x }{ ae } -\cfrac { b^{ 2 }y }{ -\cfrac { b^{ 2 } }{ a }  } =a^{ 2 }e^{ 2 }$
$\Rightarrow x+ey-ae^{ 3 }=0---(ii)$

If line $y+3x=c$ is normal of the ellipse ${ x }^{ 2 }+3{ y }^{ 2 }=3$ then equation of normal is-

  1. $y-3x\pm \sqrt { 3 } =0$

  2. $y+3x\pm \sqrt { 3 } =0$

  3. $y+3x\pm 3 =0$

  4. $y+3x\pm 1 =0$


Correct Option: B
Explanation:

If $y=mx+c$ is normal to ellipse
${ c }^{ 2 }={ m }^{ 2 }\cfrac { { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 }{ m }^{ 2 } } $
${ x }^{ 2 }+3{ y }^{ 2 }=3$
$\cfrac { { x }^{ 2 } }{ 3 } +\cfrac { { y }^{ 2 } }{ 12 } =1$
${ a }^{ 2 }=3,b=1$
$y+3x=c$
$m=-3$
${ c }^{ 2 }={ (-3) }^{ 2 }\cfrac { { \left( { a }^{ 2 }-{ b }^{ 2 } \right)  }^{ 2 } }{ { a }^{ 2 }+{ b }^{ 2 }{ m }^{ 2 } } =9\times \cfrac { { (3-1) }^{ 2 } }{ 3+9 } $
$=\cfrac { 9\times 4 }{ 12 } =3$

Equation of normal
$y+3x\pm \sqrt { 3 } =0$

Length of latusrectum of the ellipse $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{b^{2}}=1$, if the normal, at an end of latusrectum passes through one extremity of the minor axis, then equation of eccentricity of ellipse is

  1. $e^4+e^2-1=0$

  2. $e^3+e^2-1=0$

  3. $e^4+e^2+1=0$

  4. none of these


Correct Option: A
The domain of $f(x)=\dfrac 1{\sqrt {x-[x]}}$ is 
  1. $R$

  2. $Z$

  3. $R-Z$

  4. $None\ of\ these$


Correct Option: C
Explanation:

The function is defined as 

$f(x)=\dfrac 1{\sqrt {x-[x]}}$

The function is not defined if

$\sqrt {x-[x]}=0$

$\implies x-[x]=0$

$\implies x=[x]$

This happens only in the case of Integers 

So The function is not defined at Integer Values

Hence , The Domain of function is $R-Z$

The normal of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ at a point $P(x _1,y _1)$ on  it, meets the x-axis in $G$. $PN$ is perpendicular to $OX$, where $O$ is origin. The value of $\frac{l(OG)}{l(ON)}$ is -

  1. $e$

  2. $e^2$

  3. $e^3$

  4. $e^2-1$


Correct Option: C

The maximum number of normals that can be drawn from any point outside of an ellipse, in general, is 

  1. $2$

  2. $3$

  3. $1$

  4. $4$


Correct Option: A

The line $y = mx - \displaystyle \frac{(a^2 - b^2)m }{\sqrt{a^2+ b^2 m^2}}$ is normal to the ellipse $\displaystyle \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ for all values of $m$ belongs to:

  1. $(0, 1)$

  2. $(0, \infty)$

  3. $R$

  4. None of these


Correct Option: C
Explanation:

The equation of the normal to the given ellipse at the point $P(a  \cos  \theta,  b   \sin  \theta)$ is $ax  \sec  \theta - by  \cos ec \theta = a^2 - b^2$.
$\Rightarrow    \displaystyle y = \left ( \frac{a}{b} \tan  \theta \right)  x - \frac{(a^2 - b^2)}{b} \sin \theta$      (i)
Let      $\displaystyle \frac{a}{b} \tan  \theta = m$, so that
$\displaystyle \sin \theta = \frac{bm}{\sqrt{a^2 + b^2 m^2}}$
Hence, the equation of the normal Equation (i) becomes
$ y = mx - \displaystyle \frac{(a^2 - b^2)m}{\sqrt{a^2 + b^2 m^2}}$
$\therefore    m  \in  R,$ as $m  = \dfrac{a}{b} tan  \theta  \in  R.$

If the length of perpendicular drawn from origin to any normal to the ellipse $\cfrac{{x}^{2}}{16}+\cfrac{{y}^{2}}{25}=1$ is $l$, then $l$ cannot be

  1. $4$

  2. $5/2$

  3. $1/2$

  4. $2/3$


Correct Option: A,B,C,D

If the normal at an end of a latus-rectum of an ellipse $\displaystyle\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ passes through one extremity of the minor axis, the eccentricity of the ellipse is given by:

  1. $e^2=5$

  2. $\displaystyle e^2=\frac{\sqrt{5}+1}{2}$

  3. $\displaystyle e=\frac{\sqrt{5}-1}{2}$

  4. $\displaystyle e^2=\frac{\sqrt{5}-1}{2}$


Correct Option: D
Explanation:

Let $a>b$, then one of latus rectum of the ellipse is $(ae, \cfrac{b^2}{a})$

Thus equation of normal at this point is given by,

$\cfrac{a^2x}{ae}-\cfrac{b^2y}{b^2/a}=a^2e^2$
Given it passes through one of minor axis ,which is $(0,-b)$
$\Rightarrow \cfrac{a^2(0)}{ae}-\cfrac{b^2(-b)}{b^2/a}=a^2e^2$
$\Rightarrow e^2=\cfrac{b}{a}$

Now using $e^2=1-\cfrac{b^2}{a^2}$
we get,  $e^4+e^2-1=0$
$e^2=\cfrac{-1+\sqrt{5}}{2}, \cfrac{-1-\sqrt{5}}{2}$(not possible)

$\therefore e^2=\cfrac{-1+\sqrt{5}}{2}$