Tag: maths
Questions Related to maths
Let $z _ { 1 } , z _ { 2 }$ and $z _ { 3 }$ represent the vertices $A, B$ and $C$ of the triangle $A B C$ in the argand that $\left| z _ { 1 } \right| = \left| z _ { 2 } \right| = \left| z _ { 3 } \right| = 5,$ then $z _ { 1 } \sin 2 A + z _ { 2 } \sin 2 B + z _ { 3 } \sin 2 C = 0.$
If $\sin \frac {6\pi}5+i(1+\cos \frac {6\pi }5)$ then
If Arg $(z + i)\, -$ Arg $(z - i)$ $= \dfrac{\pi}{2}$, then $z$ lies on a ..........
If $\overline { z } $ lies in the third quadrant then $z$ lies in the
Let $z _1$ and $z _2$ are two complex numbers such that $(1-i)z _1=2z _2$ and $arg(z _1z _2)=\dfrac{\pi}{2}$ then $arg(z _2)$ is equals to:
The complex number $\dfrac{1 + 2i}{1 - i}$ lies in which quadrant of the complex plane.
If $arg(z) < 0$, then $arg(-z)-arg(z)=$
Which of the given alternatives represent a point in Argand plane, equidistant from roots of the equation $(z+1)^4= 16z^4$?
$\sin ^{ 8 }{ \theta } -\cos ^{ 8 }{ \theta } -\left( \sin ^{ 2 }{ \theta } -\cos ^{ 2 }{ \theta } \right) \left( 1-\sin ^{ 2 }{ \theta } \right) $=0
If $tan x + cot x = 2$, then $sin^{2n}x+cos^{2n}x=$