Tag: maths

Questions Related to maths

If $A= \left ( 5,-1,1 \right ),B= \left ( 7,-4,7 \right ),C= \left ( 1,-6,10 \right ),D= \left ( -1,-3,4 \right )$. Then $ABCD$ is a

  1. square

  2. rectangle

  3. rhombus

  4. none of these


Correct Option: C
Explanation:

AB${=}$ $\sqrt{{(7-5)}^{2}+{(-4+1)}^{2}+{(7-1)}^{2}}$
AB${=}$ $\sqrt{{(2)}^{2}+{(-3)}^{2}+{(6)}^{2}}$
AB${=}$ $\sqrt{49}$
AB${=}$ 7
Similarly you find that BC${=}$ $\sqrt{49}$  CD${=}$ 7  and DA${=}$7
Hence all sides of quadrilateral are equal, Now we check the diagonals
AC${=}$ $\sqrt{{(1-5)}^{2}+{(-6+1)}^{2}+{(10-1)}^{2}}$
AC${=}$ $\sqrt{122}$
similarly BD${=}$ $\sqrt{74}$ 
Diagonals are not equal
direction ratio of line passing through AC is (-4,-5,9)
direction ratio of line passing through  BD is (-8,1,-3), As the dot product dr of AC and BD are equal to 0 which means AC is perpendicular to BD,
All sides are equal and diagonal are not equal but bisect each other at right angle
hence it is rhombus

Let $A= \left ( 1,2,3 \right )B= \left ( -1,-2,-1 \right )C= \left ( 2,3,2 \right )$ and $ D= \left ( 4,7,6 \right )$. Then $ABCD$ is a

  1. rectangle

  2. square

  3. parallelogram

  4. none of these


Correct Option: C
Explanation:

AB${=}$ $\sqrt{{(-1-1)}^{2}+{(-2-2)}^{2}+{(-1-3)}^{2}}$
AB${=}$ $\sqrt{{(-2)}^{2}+{(-4)}^{2}+{(-4)}^{2}}$
AB${=}$ $\sqrt{36}$
AB${=}$ 6
Similarly you find that BC${=}$ $\sqrt{43}$  CD${=}$ 6  and DA${=}$ $\sqrt{43}$
Hence opposite sides of quadrilateral are equal, Now we check the diagonals
AC${=}$ $\sqrt{{(2-1)}^{2}+{(3-2)}^{2}+{(2-3)}^{2}}$
AC${=}$ $\sqrt{3}$
similarly BD${=}$ $\sqrt{155}$ 
Diagonals are not equal
direction ratio of line passing through AB is (-2,-4,-4)
direction ratio of line passing through  CD is (2,4,4), As the dr of AB and CD are proportional which means AB is parallel to CD,
Similarly check for BC and DA then you will find that they are also parallel
hence it is parallelogram

If $A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C= \left ( \sqrt{2},\sqrt{2},0 \right )$ and $D= \left ( \displaystyle \frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17} \right )$, then $ABCD$ is a

  1. rhombus

  2. square

  3. parallelogram

  4. none of these


Correct Option: B
Explanation:

Given points are, $A= \left ( 0,0,2 \right ),B= \left (\sqrt{2},\sqrt{2},2 \right ),C=

\left ( \sqrt{2},\sqrt{2},0 \right )$ and $D= \left ( \displaystyle

\frac{8\sqrt{2}-20}{17},\frac{12\sqrt{2}+4}{17},\frac{20-8\sqrt{2}}{17}

\right )$

Length $AB = \sqrt{\sqrt{2}^2 + \sqrt{2}^2 + (2-2)^2} = 2$
Length $BC = \sqrt{(\sqrt{2}-\sqrt{2})^2 + (\sqrt{2}-\sqrt{2})^2 + 2^2} = 2$
Length $CD = \sqrt{\left(

\dfrac{8\sqrt{2}-20}{17}-\sqrt{2}\right)^2 + \left(\dfrac{12\sqrt{2}+4}{17}-\sqrt{2}\right)^2 + \left(\dfrac{20-8\sqrt{2}}{17}\right)^2} = 2$
Length $AD = \sqrt{\left(

\dfrac{8\sqrt{2}-20}{17}\right)^2 + \left(\dfrac{12\sqrt{2}+4}{17}\right)^2 + \left(\dfrac{20-8\sqrt{2}}{17} - 2\right)^2} = 2$

Angle between two vectors $\overline{AB} = p _{1}\hat{i}+q _{1}\hat{j}+r _{1}\hat{k} = \sqrt{2}\hat{i} + \sqrt{2}\hat{j} + 0\hat{k}$ and $\overline{BC} = p _{2}\hat{i}+q _{2}\hat{j}+r _{2}\hat{k} = 0\hat{i} + 0\hat{j} + 2 \hat{k}$ is $cos\theta = 0 \Rightarrow \theta = 90^o$

All sides are equal and angle between $AB$ and $BC$ is $90^o$, Hence, its a square.

The points $A(1,2,-1),B(2,5,-2),C(4,4,-3)$ and $D(3,1,-2)$ are

  1. collinear

  2. vertices of a rectangle

  3. vertices of a square

  4. vertices of a rhombus


Correct Option: B
Explanation:

AB${=}$ $\sqrt{{(2-1)}^{2}+{(5-2)}^{2}+{(-2+1)}^{2}}$
AB${=}$ $\sqrt{{(1)}^{2}+{(3)}^{2}+{(-1)}^{2}}$
AB${=}$ $\sqrt{11}$
Similarly you find that BC${=}$ $\sqrt{6}$  CD${=}$ $\sqrt{11}$  and DA${=}$$\sqrt{6}$
Hence opposite sides of quadrilateral are equal, Now we check the diagonals
AC${=}$ $\sqrt{{(4-1)}^{2}+{(4-2)}^{2}+{(-3+1)}^{2}}$
AC${=}$ $\sqrt{17}$
similarly BD${=}$ $\sqrt{17}$ 
Diagonals are not equal
direction ratio of line passing through AB is (1,3,-1)
direction ratio of line passing through  BC is (2,-1,-1), As the dot product dr of AB and BC are equal to 0 which means AB is perpendicular to BC,similarly check for others sides too
opposite sides are equal and diagonal are equal
hence it is rectangle

A rectangular parallelopiped is formed by drawing planes through the points $(-1,2,5)$ and $(1,-1,-1)$ and parallel to the coordinate planes. the length of the diagonal of the parallelopiped is

  1. $2$

  2. $3$

  3. $6$

  4. $7$


Correct Option: D
Explanation:

The plane forming the parallelipiped are

$x=-1,x=1;y=2,y=-1$ and $z=5,z=-1$
Hence, the lengths of the edges of the parallelopiped are
$1-\left( -1 \right) =2,\left| -1-2 \right| =3$ and $\left| -1-5 \right| =6$
$($ length of an edge of the parallelopiped is the distance between the parallel plane sperpendicular to the edge$)$
$\therefore$ Length of diagonal of the parallelopiped
$=\sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ 6 }^{ 2 } } =\sqrt { 49 } =7$

The coordinates of a point which is equidistant from the point $(0,0,0),(a,0,0),(0,b,0)$ and $(0,0,c)$ are given by

  1. $\displaystyle \left( \frac { a }{ 2 } ,\frac { b }{ 2 } ,\frac { c }{ 2 }  \right) $

  2. $\displaystyle \left( \frac { -a }{ 2 } ,\frac { -b }{ 2 } ,\frac { c }{ 2 }  \right) $

  3. $\displaystyle \left( \frac { a }{ 2 } ,\frac { -b }{ 2 } ,\frac { -c }{ 2 }  \right) $

  4. $\displaystyle \left( \frac { -a }{ 2 } ,\frac { b }{ 2 } ,\frac { -c }{ 2 }  \right) $


Correct Option: A
Explanation:

Let $P(x,y,z)$ be the required point.

Then $OP=PA=PB=PC$
Now $OP=PA \Longrightarrow OP^2+PA^2 \Longrightarrow x^2+y^2+z^2$

= $(x-a)^2+(y-0)^2+(z-0)^2 \Longrightarrow x=\dfrac{a}{2}$
Similarily, $OP=PB=y=\dfrac{b}{2}$ and $OP=PC=z=\dfrac{c}{2}$

hence the coordinate of the required point are $\left(\dfrac{a}{2},\dfrac{b}{2},\dfrac{c}{2}\right)$

What is the distance in space between $(1,0,5)$ and $(-3,6,3)$?

  1. $4$

  2. $6$

  3. $2\sqrt { 11 } $

  4. $2\sqrt { 14 } $

  5. $12$


Correct Option: D
Explanation:

The distance between the points $(1,0,5)$ and $(-3,6,3)$ is given below:

$D=\sqrt { \left( 3-5 \right) ^{ 2 }+\left( 6-0 \right) ^{ 2 }+\left( -3-1 \right) ^{ 2 } } $
$=\sqrt { \left( -2 \right) ^{ 2 }+\left( 6 \right) ^{ 2 }+\left( -4 \right) ^{ 2 } } $
$=\sqrt { 4+36+16 } =\sqrt { 56 } $
$=2\sqrt { 14 }$ 

$L _1:\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$
$L _2:\dfrac{x-2}{3}=\dfrac{y-4}{2}=\dfrac{z-5}{5}$ be two given lines, point P lies on $L _1$ and Q lies on $L _2$ then distance between P and Q can be

  1. $\dfrac{1}{3}$

  2. $\dfrac{1}{9}$

  3. $15$

  4. $30$


Correct Option: A,C,D
Explanation:

$\dfrac{|\begin{vmatrix}2-1&4-2  &5-3 \2 & 3 &4 \ 3& 2 & 5\end{vmatrix}|}{|\begin{vmatrix}i&j  &k \2 & 3 & 4\3 & 2 & 5\end{vmatrix}|}=\dfrac{1}{\sqrt{78}}$

Fill in the blank : 
$[(-12) + (-15)] + (-5) = (-12) + [(-15) + .....]$

  1. $(-12)$

  2. $(-15)$

  3. $(-5)$

  4. $5$


Correct Option: C
Explanation:

Addition is associative for integers
$i.e. (a + b) + c = a + (b + c)$
$\therefore [(-12) + (-15)] + (-5) = (-12) + [(-15) + (-5)]$

So, $C$ is correct.

Simplify using associative property:
$(-5) \times [(-8) \times 2] =$  $....$

  1. $40$

  2. $-80$

  3. $80$

  4. $-40$


Correct Option: C
Explanation:

$(-5) \times [(-8)\times 2] = (-5)\times (2\times (-8))$ (commutative property)
$= [(-5)\times 2] \times (-8)$ (associative property)
$= (-10) \times (-8)$
$= 80$
(Here, we used various properties to skip $(-5)\times (-8)$ which could have been time consuming).