Tag: maths

Questions Related to maths

Find the numbers which are not in generalised form.

  1. $5 \times 100 + 6 \times 10 + 0$

  2. $2 \times 10 + 3 \times 10 + 1$

  3. $3 \times 100 + 2 \times 100 + 2$

  4. $2 \times 10 + 2$


Correct Option: B,C
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
Here, $2 \times 10 + 3 \times 10 + 1$ and $3 \times 100 + 2 \times 100 + 2$ are not in generalised form.


So, options B and C are correct.

Choose the correct option which are in general form.

  1. $200 \times 4 + 10 \times 1 - 3$

  2. $1 \times 100 + 2 \times 10 + 3$

  3. $4 \times 100 + 3 \times 10 + 8$

  4. $12 \times 100 + 5 + 2 \times 10$


Correct Option: B,C
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
So, $1 \times 100 + 2 \times 10 + 3$ and $4  \times 100 + 3 \times 10 + 8$ are in general form.


So, options B and C are correct.

Find the generalised number into usual form: $3 \times 100 + 3 \times 10 + 3$.

  1. $303$

  2. $333$

  3. $330$

  4. $300$


Correct Option: B
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
Here, $ 3 \times  100 + 3 \times  10 + 3 = 333 $
Hence, the solution is $333.$


So, option B is correct.

Check the option which are in general form.

  1. $6 \times 100 + 4 \times 10 + 0$

  2. $5 \times 100 - 4 \times 10 - 2$

  3. $6 \times 10 + 2 \times 10 + 2$

  4. $7 \times 100 + 9 - 1 \times 20$


Correct Option: A
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
So, $6 \times 100 + 4 \times 10 + 0$ is in general form.


So, option A is correct.

Find the number in general form: $875$

  1. $8 \times 10 + 7 \times 10 + 5$

  2. $8 \times 100 + 7 \times 10 + 5$

  3. $8 \times 100 + 7 \times 100 + 5$

  4. $8 \times 100 + 7 \times 10 + 50$


Correct Option: B
Explanation:

The general form of any three digits numbers is, $abc = a \times 100 + b \times 10 + c$
So, $875 = 8 \times 100 + 7 \times 10 + 5$


So, option B is correct.

If $4 \times 100 + 5 \times 10 + 0$ is in generalised form. Find its usual form.

  1. $400$

  2. $405$

  3. $450$

  4. $540$


Correct Option: C
Explanation:

The general form of any three numbers will be, $abc = a \times 100 + b \times 10 + c$
Here, $4 \times 100 + 5 \times 10 + 0 = 450 $
So, option C is correct.

Determine the number which are not in general form?

  1. $3 \times 10 + 2 + 2 \times 10$

  2. $2 \times 100 + 5 \times 10 + 9$

  3. $2 \times 100 + 2 - 0 \times 10$

  4. $9 \times 100 + 5 \times 10 + 2$


Correct Option: A,C
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
Here, $3 \times 10 + 2 + 2 \times 10$ and $2 \times 100 + 2 - 0 \times 10 $ are not in generalised form.


So, options A and C are correct.

Find the number for the generalised form: $3 \times 100 + 0 \times 10 + 0$

  1. $300$

  2. $303$

  3. $310$

  4. $301$


Correct Option: A
Explanation:

The general form of any three digit number is, $abc = a \times 100 + b \times 10 + c$
Here, $300 = 3 \times 100 + 0 \times 10 + 0$

So, option A is correct.

If $P = EI $ and $E = IR, P =$
1) $I^2R$
2) $\frac{I}{2}$
3) $E^2R$
4) $\dfrac{E^2}{R}$

  1. 1 only

  2. 4 only

  3. 1 and 4 only

  4. 1 and 3 only

  5. 2 and 4 only


Correct Option: C
Explanation:

Given that $P=EI$ and $E=IR$
which implies $P=(IR)I = {I}^{2}R$
Since $I=\dfrac {E}{R}$, we get $P={E}^{2}/R$
So, the correct option is $C$.

The general form of $302$ is

  1. $3 \times 100 + 1 \times 10 - 8 \times 1$

  2. $3 \times 100 + 2 \times 1$

  3. $302 \times 1$

  4. None of the above


Correct Option: B
Explanation:

$302$ can genarally expressed as
$302$= $300 \times 100 + 2 \times 1$