Tag: maths
Questions Related to maths
Write the following as fractions in their simplest form.
-
0.4
-
1.5
-
25.75
-
0.072
-
1.248
$0.4=\dfrac 4{10}=\dfrac 25\1.5=\dfrac{15}{10}=\dfrac 32\25.75=\dfrac{2575}{100}=\dfrac{103}{4}\0.072=\dfrac{72}{1000}=\dfrac{9}{125}\1.248=\dfrac{1248}{1000}=\dfrac{156}{125}$
$\dfrac{2}{3}$ is equal to $\dfrac{4}{6}$.
-
True
-
False
Now,
The fraction $\displaystyle \frac{3}{5}$ is found between which pair of fractions on a number line?
-
$\displaystyle \frac{7}{10}$ and $\displaystyle \frac{3}{4}$
-
$\displaystyle \frac{2}{5}$ and $\displaystyle \frac{1}{2}$
-
$\displaystyle \frac{1}{3}$ and $\displaystyle \frac{5}{13}$
-
$\displaystyle \frac{2}{7}$ and $\displaystyle \frac{8}{11}$
(a) Let us consider the first set of fraction $\dfrac { 7 }{ 10 } ,\dfrac { 3 }{ 4 }$ and another given fraction $\dfrac { 3 }{ 5 }$
Which one of the following sets of fractions is in the correct sequence of ascending order of their values ?
-
$\displaystyle -\frac{1}{2},\frac{5}{6},\frac{-4}{9}$
-
$\displaystyle -\frac{3}{7},\frac{-5}{6},\frac{3}{5}$
-
$\displaystyle -\frac{1}{2},-\frac{4}{9},\frac{5}{6}$
-
$\displaystyle -\frac{4}{9},\frac{5}{6},\frac{1}{6}$
(a) Let us consider the first set of fraction $-\dfrac { 1 }{ 2 } ,\dfrac { 5 }{ 6 } ,-\dfrac { 4 }{ 9 }$
Which of the following statements is true ?
-
$\displaystyle {\frac{5}{7}\, <\, \frac{7}{9}\, <\, \frac{9}{11}\, <\, \frac{11}{13}}$
-
$\displaystyle {\frac{11}{13}\, <\, \frac{9}{11}\, <\, \frac{7}{9}\, <\, \frac{5}{7}}$
-
$\displaystyle {\frac{5}{7}\, <\, \frac{11}{13}\, <\, \frac{7}{9}\, <\, \frac{9}{11}}$
-
$\displaystyle {\frac{5}{7}\, <\, \frac{9}{11}\, <\, \frac{11}{13}\, <\, \frac{7}{9}}$
Arrange the following numbers in descending order.
$-2,\, \displaystyle {\frac{4}{-5},\, \frac{-11}{20},\, \frac{3}{4}}$
-
$\displaystyle {\frac{3}{4}\, >\, -2\, >\, \frac{-11}{20}\, >\, \frac{4}{-5}}$
-
$\displaystyle {\frac{3}{4}\, >\, \frac{-11}{20}\, >\, \frac{4}{-5}\, >\, -2}$
-
$\displaystyle {\frac{3}{4}\, >\, \frac{4}{-5}\, >\, -2\, >\, \frac{-11}{20}}$
-
$\displaystyle {\frac{3}{4}\, >\, \frac{4}{-5}\, >\, \frac{-11}{20}\, >\, -2}$
The rational number $\dfrac {4}{-5}$ is same as $\dfrac {-4}{5}$.
The average of the middle two rational numbers if $\displaystyle {\frac{4}{7},\, \frac{1}{3},\, \frac{2}{5},\, \frac{5}{9}}$ are arranged in ascending order is:
-
$\displaystyle \frac{86}{90}$
-
$\displaystyle \frac{86}{45}$
-
$\displaystyle \frac{43}{45}$
-
$\displaystyle \frac{43}{90}$
$\displaystyle {\frac{4}{7},\, \frac{1}{3},\, \frac{2}{5},\, \frac{5}{9}}$
The above numbers in ascending order are
$\displaystyle {\frac{1}{3}\, <\, \frac{2}{5}\, <\, \frac{5}{9}\, <\, \frac{4}{7}}$
Middle two numbers are $\displaystyle \frac{2}{5}$ and $\displaystyle \frac{5}{9}$
$\therefore$ Average = $\displaystyle {\frac{2/5\, +\, 5/9}{2}\, =\, \frac{43}{90}}$
The given rational numbers are $\displaystyle {\frac{1}{2},\, \frac{4}{-5},\, \frac{-7}{8}}.$ If these numbers are arranged in the ascending order or descending order, then the middle number is:
-
$\displaystyle \frac{1}{2}$
-
$\displaystyle \frac{-7}{8}$
-
$\displaystyle \frac{4}{-5}$
-
None of these
The rational number $\dfrac {4}{-5}$ is same as $\dfrac {-4}{5}$.
What is the percentage of least number in the greatest number if $\displaystyle \frac{3}{5},\, \displaystyle \frac{9}{5},\, \displaystyle \frac{1}{5},\, \displaystyle \frac{7}{5}$ are arranged ascending or descending order?
-
$11\, \displaystyle \frac{1}{9}\, \%$
-
$10\, \%$
-
$20\, \%$
-
$25\, \%$
The given numbers can be arranged in the ascending order as $\displaystyle \frac{1}{5}\, <\, \displaystyle \frac{3}{5}\, <\, \displaystyle \frac{7}{5}\, <\, \displaystyle \frac{9}{5}$
Greatest number $=\, \displaystyle \frac{9}{5}$;
Least number $=\, \displaystyle \frac{1}{5}$.
We have, $\displaystyle \frac{9}{5}\, \times\, \displaystyle \frac{x}{100}\, =\, \displaystyle \frac{1}{5}$
$x\, =\, \displaystyle \frac{100}{9}\, =\, 11\, \displaystyle \frac{1}{9}\, \%$
Which of the following statements is true ?
-
$\displaystyle\frac{-2}{3}\, <\, \frac{4}{-9}\,<\,\frac{-5}{12}\, <\, \frac{7}{-18}$
-
$\displaystyle\frac{7}{-18}\, <\, \frac{-5}{12}\,<\,\frac{4}{9}\, <\, \frac{-2}{3}$
-
$\displaystyle\frac{4}{-9}\, <\, \frac{7}{-18}\,<\,\frac{-5}{12}\, <\, \frac{2}{-3}$
-
$\displaystyle\frac{-5}{12}\, <\, \frac{-2}{3}\,<\,\frac{4}{-9}\, <\, \frac{7}{-18}$
This question is very easy if we solve it by verification
process.
Take (A) i.e. $\displaystyle\frac{-2}{3}\,<\,\frac{4}{-9}\, \frac{-5}{12}\, <\,\frac{7}{-18}$
First take \displaystyle\frac{-2}{3},\,\frac{-4}{9}$
$-2\,\times\,9,\, 4\,\times\,3$
-18, -12
$\because\, -12\,>\,-18$
So, $\displaystyle\frac{-4}{9}, \frac{-5}{12}$
$- 4\,\times\, 12, \, - 5\,\times\, 9$
- 48, - 45
$\because\, -45\, >\, -48$
So, $\displaystyle\frac{-5}{12}\,>\, \frac{-4}{9},\,i.e.,\frac{-4}{9}\, <\, \frac{-5}{12}$
Finally, $\displaystyle\frac{-5}{12}, \frac{-7}{18}$
$5\,\times\, 18, \, -7\,\times\, 12$
- 90, - 84
$\because\, -84\, >\, -90$
So, $\displaystyle\frac{-7}{18}\, >\, \frac{-5}{12}, i.e., \frac{-5}{12}\, <\, \frac{-7}{18}$
$\therefore\, \displaystyle\frac{-2}{3}\, <\, \frac{-4}{9}\,<\, \frac{-5}{12}\,<\, \frac{-7}{18}$
You can identify the answer by observing the question by practicing this method.