Tag: maths

Questions Related to maths

If $F(x)=2x^3-21\,x^2+36x-20$, then 

  1. f has maxima at x=1

  2. f has minima at x=1

  3. f has maximum value -128

  4. f has minimum value -3


Correct Option: A
Explanation:

Consider given the function,

$F\left( x \right)=2{{x}^{3}}-21{{x}^{2}}+36x-20$      ……(1)

Differentiate with respect to x,

${{F}^{'}}\left( x \right)=6{{x}^{2}}-42x+36$          ……..(2)


For maxima and minima,

$ F\left( x \right)=0 $

$ 6{{x}^{2}}-42x+36=0 $

$ {{x}^{2}}-7x+6=0 $

$ {{x}^{2}}-6x-x+6=0 $

$ x\left( x-6 \right)-1\left( x-6 \right)=0 $

$ \left( x-6 \right)\left( x-1 \right)=0 $

$ x=1,6 $


Differentiate equation 2nd with respect to x,

${{F}^{''}}\left( x \right)=12x-42$

At $x=1\Rightarrow {{F}^{''}}\left( x \right)<0$

Hence, F(x) Is maximum.


At $x=6\Rightarrow F\left( x \right)>0$

Hence, function F(x) is minimum.

 

Hence, this is the answer.

Find out the largest term of the sequence  $\displaystyle \frac{1}{503},\displaystyle \frac{4}{524}, \displaystyle \frac{9}{581}, \displaystyle \frac{16} {692},....$

  1. $\displaystyle \frac{25}{875}$

  2. $\displaystyle \frac{36}{1148}$

  3. $\displaystyle \frac{49}{1529}$

  4. $\displaystyle \frac{64}{2036}$


Correct Option: C
Explanation:

General term can be written as
$T _{n}=\displaystyle \frac{n^{2}}{500+3n^{3}}$
then, $\displaystyle \frac{dT _{n}}{dn}=\displaystyle \frac{n(1000-3n^{3})}{(500+3n^{3})^{2}}$
For max or min of $T _{n}$,
$\displaystyle \frac{dT _{n}}{dn}=0$
$\therefore n=\left ( \displaystyle \frac{1000}{3} \right )^{1/3}=6.933\approx7$

Hence, $T _{7}$ is the largest term. So largest term in the given sequence is $\displaystyle \frac{49}{1529}$

Let $f(x)=\begin{cases} \left| x-1 \right| +a\ if\ x\le 1 \ 2x+3 \ \ \ \ if \ x>1 \end{cases}$ 
If $f(x)$ has a local minimum at $x=1$ then 

  1. $a>5$

  2. $0$

  3. $a\le 5$

  4. $a=5$


Correct Option: C

If $\displaystyle xy=a^{2}$ and $\displaystyle S=b^{2}x+c^{2}y$ where a,b and c are constants then the minimum value of S is 

  1. $abc$

  2. $\displaystyle bc\sqrt{a}$

  3. $2abc$

  4. none of these


Correct Option: C
Explanation:

Given $x y = a^2$ and $S = b^2x + c^2y$
$\Rightarrow S = b^2 x + c^2a^2/x$
$\Rightarrow \dfrac{dS}{dx} = b^2 - c^2a^2/x^2$
For maximum or minimum value of $S$
$ \dfrac{dS}{dx} = 0 = b^2 - c^2a^2/x^2 \Rightarrow x =\pm  ac/b$
Now $\dfrac{dS}{dx} = 2 c^2a^2/x^3$
Clearly at $x =  ac/b$,  $\dfrac{dS}{dx} = 2 b^3/ac > 0 $ (Assuming that $ b^3/ac>0$)
Hence minimum value of $S$ is $= b^2(ac/b)+c^2(b/ac)= 2abc$

If $\displaystyle \theta +\phi =\frac{\pi }{3}$ then $\displaystyle  \sin \theta \cdot\sin \phi$ has a maximum value at $\displaystyle \theta$ =

  1. $\displaystyle \dfrac{\pi }{6}$

  2. $\displaystyle \dfrac{2\pi }{3}$

  3. $\displaystyle \dfrac{\pi }{4}$

  4. none of these


Correct Option: A
Explanation:

Let $y = \sin\theta.\sin\phi = \sin\theta.\sin(\dfrac{\pi}{3}-\theta)$
For maximum value of $y$ 
$\dfrac{dy}{dx} = 0 = \cos\theta.\sin(\dfrac{\pi}{3}-\theta) - \sin\theta.\cos(\dfrac{\pi}{3}-\theta) = \sin(2\theta -\dfrac{\pi}{3})$
$\Rightarrow \theta = \dfrac{\pi}{6}$

The sum of two nonzero numbers is $8$. The minimum value of the sum of their reciprocals is

  1. $\displaystyle \frac{1}{4}$

  2. $\displaystyle \frac{1}{2}$

  3. $\displaystyle \frac{1}{8}$

  4. none of these


Correct Option: B
Explanation:

Let $x$ and $y$ be two numbers 
$\Rightarrow x+y = 8$
Assume $z$ be be sum of their inverse
$z = 1/x+1/y =\dfrac{x+y}{xy} = \dfrac{8}{xy} = \dfrac{8}{x(8-x)}$
For minimum value of $z $
$\dfrac{dz}{dx} = 0 =\dfrac{16(4-x)}{(x(8-x))^2}\Rightarrow x = 4$
Hence minimum value of $z$ is $=1/4+1/4 = \dfrac{1}{2}$ 

$\displaystyle \log _{10}x + \log _{10}y \geq 2$, then the smallest possible value of $\displaystyle x + y$ is

  1. $\displaystyle 10$

  2. $\displaystyle 30$

  3. $\displaystyle 20$

  4. None of these


Correct Option: C
Explanation:

${log} _{10}x+{log} _{10} y=$ $log _{10}(xy)\geq2$, 
Thus, $xy\geq100$
 Given the product of two numbers ,addition of two number is smallest when they are equal.
$ x^2\geq100$
Therefore, smallest value of $x+y =20$
Hence, option 'C' is correct.

Let $f(x)$ be a non-zero polynomial of degree $4$. Extreme points of $f(x)$ are $0, -1, 1$. If $f(k)=f(0)$ then?

  1. k has one rational & two irrational roots

  2. k has four rational roots

  3. k has four irrational roots

  4. k has three irrational roots


Correct Option: A
Explanation:

Let $f'(x)=\lambda x(x^2-1)\Rightarrow f(x)=\lambda\left(\dfrac{x^4}{4}-\dfrac{x^2}{2}\right)+C$
Now $f(0)=f(k)\Rightarrow \dfrac{k^4}{4}-\dfrac{k^2}{2}=0\Rightarrow k=0$ or $\pm \sqrt{2}$
Hence $(1)$.

Divide 10 into two parts such that the sum of twice of one part and square of the other is a minimum.

  1. 6,4

  2. 7,3

  3. 8,2

  4. 9, 1


Correct Option: D
Explanation:

Let one part be $x$

Therefore another part will be $10-x$.
Hence application of the condition gives us 
$f(x)=x^{2}+2(10-x)$
$f'(x)=2x-2$
$=0$
$x=1$
Hence the parts are $1,9$

Divide 64 into two parts such that the sum of the cubes of two parts is minimum.

  1. 30, 34

  2. 31, 33

  3. 32, 32.

  4. 35, 29


Correct Option: C
Explanation:

Let one part be x.
Hence another part will be 64-x.
Let 
$f(x)=x^{3}+(64-x)^{3}$.
$f'(x)$
$=3x^{2}-3(64-x)^{2}$
$=0$
Or 
$x^{2}=(64-x)^{2}$
Or 
$x=64-x$ or $x=-64+x$
Considering equation $x=64-x$, we get 
$x=32$.
Hence another part will also be 32.