Tag: maths

Questions Related to maths

Let $S={1,2,3,4,5,6,7}$ and let $A={2,5,7}$ then $A'$ is

  1. ${1,3,6}$

  2. ${1,3,4,6}$

  3. ${1,4,6}$

  4. none of these


Correct Option: B
Explanation:

Given, $S={1,2,3,4,5,6,7}$ and let $A={2,5,7}$.

Now, $A'=S-A={1,3,4,6}$.

If AandB are subsects of the universal set X and n(X)=$50,$n(A)=$35$,n(B)=20 Find

  1. $n(A\bigcup {B)} $

  2. $n(A\bigcap {B)} $

  3. $n(A`\bigcap {B)} $

  4. $n(A\bigcap {B`} )$


Correct Option: A

For any two sets A and B, A' - B' is equal to

  1. A -B

  2. B - A

  3. A - A'

  4. A - B'


Correct Option: B
Explanation:

$A' -B' = B-A$

since $ -X' =X \ and\ X'=-X$

If the universal set is U = $ \displaystyle \left { 1^{2},2^{2},3^{2},4^{2},5^{2},6^{2} \right }  $   What is the complement of the intersection of set A = $ \displaystyle \left { 2^{2},4^{2},6^{2} \right }  $ and set B=$ \displaystyle \left { 2^{2},3^{2},4^{2} \right }  $ ?  

  1. $ \displaystyle \left { 2^{2},4^{2} \right } $

  2. $ \displaystyle \left { 1^{2},5^{2} \right } $

  3. $ \displaystyle \left { 1^{2},5^{2},6 ^{2} \right } $

  4. $ \displaystyle \left { 1^{2},3^{2},5^{2},6^{2} \right } $

  5. Answer required


Correct Option: D
Explanation:

$A\cap B={2^2,4^2}$
$\bar{A\cap B}=U-(A\cap B)={1^2,3^2,5^2,6^2}$
Option D is correct.

$|x|$ represent number of elements in region X. Now the following conditions are given
$|U|=14$, $|(A-B)^C|=12$, $|A\cup B|=9$ and $|A\Delta B|=7$, where A and B are two subsets of the universal set U and $A^C$ represents complement of set A, then?

  1. $|A|=2$

  2. $|B|=5$

  3. $|A|=4$

  4. $|B|=7$


Correct Option: A

In a battle $70\% $ of the combatants lost one eye, $80\% $ an ear, $75\% $ an arm, $85\% $ a leg and $x\% $ lost all the four limbs the minimum value of $x$ is 

  1. $10$

  2. $12$

  3. $15$

  4. $none\ of\ these$


Correct Option: B

Two hours later would be as long until midnight. What time is it now?

  1. $18:30$

  2. $20:00$

  3. $21:00$

  4. $22:00$


Correct Option: D
Explanation:

$2$ hours before midnight means $22:00$.

Hence, option D is right answer.

Statement-I: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$.
Statement-2: The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$.

  1. (1 ) StatementI is true. Statement-1 is true: Statement--2 is a correct explanation for Statement-1.

  2. (2) StatementI is true, Statement-2 is true: Statement-9 is not a correct explanation for statement-1.

  3. (3) Statement--I is true, Statement-2 is false.

  4. (4) StatementI is false. Statement-2 is true.


Correct Option: A
Explanation:

Mid-point of AB=$\begin{array}{l} = \left( {\dfrac{{3 + 1}}{2},\dfrac{{1 + 3}}{2},\dfrac{{4 + 6}}{2}} \right)\ = (2,2,5)\end{array}$
lies on the plane as it satisfies the equation of the plane
and DR s of AB $ = (2, - 2,2)$
DR s of normal to the plane $= (1, - 1,1)$
AB is the perpendicular bisector.
Hence, A is the image of 2 
 

If the points $(1,2,3)$ and $(2,-1,0)$ lie on the opposite sides of the plane $2x+3y-2z=k$, then

  1. $k< 1$

  2. $k> 2$

  3. $k< 1$ or $k> 2$

  4. $1< k< 2$


Correct Option: D
Explanation:

 Given plane equation is $2{x}+3{y}-2{z}-k=0$

$(1,2,3)$ and $(2,-1,0)$ lies on the opposite sides of the plane
$(2(1)+3(2)-2(3)-k)(2(2)+3(-1)-2(0)-k)<0$
$(2-k)(1-k)<0\implies (k-1)(k-2)<0$
$\implies 1<k<2$

If the planes $x - cy - bz = 0,cx - y + az = 0\,$ and $bx + ay - z = 0$ pass through a stright line,then the value of ${a^2} + {b^2} + {c^2} + 2abc\,$ is:

  1. $1$

  2. $2$

  3. $3$

  4. none of these


Correct Option: A
Explanation:
If the planes $(x - cy - bz = 0), (cx - y + az = 0)$ and $(bx + ay - z = 0)$ are in same line.
$\therefore$ They must be collinear.
$\begin{vmatrix}1 & -c & -b\\ c & -1 & a\\ b & a & -1\end{vmatrix} = 0$
$\Rightarrow 1(1 - a^2) + c(-c - ab) -b(ac + b) = 0$
$\Rightarrow 1 - a^2 - c^2 - abc - abc - b^2 = 0$
$\therefore a^2 + b^2 + c^2 + 2abc = 1$
Option A is correct