Tag: maths

Questions Related to maths

If $\alpha, \beta$ are the roots of the equation $x^2 - 3x + 1=0$, then the equation with roots $\displaystyle \frac{1}{\alpha - 2}, \frac{1}{\beta - 2}$ will be-

  1. $x^2 - x - 1 = 0$

  2. $x^2 + x - 1 = 0$

  3. $x^2 + x + 2 = 0$

  4. None of these


Correct Option: A

If $\displaystyle \alpha ,\beta $ are the roots of $\displaystyle x^{2}+x+1=0$ and $\displaystyle \gamma ,\delta $ are the roots $\displaystyle x^{2}+3x+1=0,$ then $\displaystyle (\alpha -\gamma)(\beta +\delta )(\alpha +\delta )(\beta -\gamma )=$

  1. $2$`

  2. $4$

  3. $6$

  4. $8$


Correct Option: D
Explanation:
Using $\alpha \beta =1$     and       $\gamma \delta =1$

$(\alpha \beta + \alpha \delta - \beta \gamma - \gamma \delta) (\alpha \beta - \alpha \gamma +\beta \delta - \gamma \delta) $

$\Rightarrow (1+\alpha \delta - \beta \gamma - 1)(1-\alpha \gamma +\beta \delta - 1)$

$\Rightarrow (\alpha \delta - \beta \gamma) (\beta \delta - \alpha \gamma) $

$\Rightarrow \delta ^{2}-\alpha ^{2}-\beta ^{2}+\gamma ^{2}$

$\Rightarrow - (\alpha ^{2}+\beta ^{2})+(\gamma ^{2}+\delta ^{2})$

$\Rightarrow - (-1)+7=8$

Final answer is 8

The number of roots of the equation  $\displaystyle x-\frac{2}{(x-1)}=1-\frac{2}{(x-1)}$ is 

  1. 0

  2. 1

  3. 2

  4. infinite


Correct Option: A
Explanation:

Given, $ x - \cfrac {2}{(x-1)} = 1 - \cfrac {2}{(x-1)} $

Cancelling out $ - \cfrac {2}{(x-1)} $ from LHS and RHS we get, $ x = 1 $
But when $ x = 1 $, denominator of fraction $ - \cfrac {2}{(x-1)} $ is $ 0 $, which is not defined.
Hence, there is no root of this equation.

If $\displaystyle a^{2}+b^{2}+c^{2} = 1,$ then which of the following cannot be the value of $( ab + bc + ca)$?

  1. $0$

  2. $\displaystyle \frac{1}{2}$

  3. $\displaystyle \frac{-1}{2}$

  4. $-1$


Correct Option: D
Explanation:

We know that $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(ab+bc+ca)$


$\Rightarrow (a+b+c) ^{2}=1+2(ab+bc+ca)$

$(a+b+c)^{2}$ should always be positive 

By checking options one by one, we get the result

1)ab+bc+ca=0

$\Rightarrow (a+b+c)^{2}=1$ which can be true 

Same way b, c options are true 

4th option where ab+bc+ca=-1/2

We get $(a+b+c)^{2}=-1$ which is false 

If $(x - a) (x - 5) + 2 = 0$ has only integral roots where $\displaystyle a \, \varepsilon \, I,$ then the value of $a$ can be 

  1. $8$

  2. $7$

  3. $6$

  4. $5$


Correct Option: A
Explanation:

Let $\alpha, \beta $ be the roots of the given equation


$\alpha +\beta =5+a$

$\alpha ×\beta=5a+2$

Eliminating "a" from the equation, we get ;

$\Rightarrow 5(\alpha +\beta) - \alpha \beta =23$

Here we have to choose the pairs $\alpha, \beta$ so that it satisfies above equation 

By trial and error method, we find $\alpha =7,\beta=6$ or vice versa 

Substituting $\alpha, \beta$ in above equation, we get a=8

$\therefore a=8$

If the roots of the equation $\displaystyle px^{2}+qx+r=0$ are in the ratio $\displaystyle \varphi \ : \ m,$ then 

  1. $\displaystyle (\varphi +m)^{2}qp=\varphi mr^{2}$

  2. $\displaystyle (\varphi +m)^{2}pr=\varphi mq$

  3. $\displaystyle (\varphi +m)^{2}pr=\varphi mq^{2}$

  4. None of the above


Correct Option: C
Explanation:
Let the roots be $\varphi r$ and $mr$
Sum of roots $= \varphi r+mr=-\dfrac{q}{p}$
$\therefore  (\varphi+m)r=-\dfrac{q}{p}$
$\therefore (\varphi+m)^2r^2=\dfrac{q^2}{p^2}$   ...(1)

Product of roots $= (\varphi r)(mr)=\dfrac{r}{p}$
$\therefore  \varphi mr^2=\dfrac{r}{p}$    ...(2)

Dividing equation (1) by (2), we get

$\dfrac{(\varphi+m)^2r^2}{\varphi mr^2}=\dfrac{\frac{q^2}{p^2}}{\frac{r}{p}}$

$\therefore \dfrac{(\varphi+m)^2}{\varphi m}=\dfrac{q^2}{pr}$

$\therefore (\varphi+m)^2pr=\varphi mq^2$

If the graph of $|y| = f (x),$ where $\displaystyle f(x)=ax^{2}+bx+c; \ \ b \, & \, c \, \epsilon \, R; \ \ a\neq 0,$  has the maximum vertical height 4, then 

  1. $a >0$

  2. $a < 0$

  3. $\displaystyle (b^{2}-4ac)$ is negative

  4. Nothing can be said


Correct Option: B
Explanation:

Given $:$ Graph of $|y|=f(x)$ , where $ax^2+bx+c$ has maximum vertical height 4

To find $:$ The condition of $a$
Solution $:$ All quadratic functions have a U-shaped graph called a parabola. 
The lowest or the highest point on a parabola is called the vertex. The vertex has the x-coordinate denoted by $x=-\dfrac b{2a}$
The y-coordinate of the vertex is the maximum or minimum value of the function.
If the y-coordinate has maximum value then parabola opens down, and $a<0$

If the list price of a book is reduced by Rs. $5$ a person can buy $5$ more books for Rs. $300$. Find the original list price of the book.

  1. $15$

  2. $10$

  3. $20$

  4. $25$


Correct Option: C
Explanation:

Let the original price of the books be $x$

$\therefore$ new price $=x-5$
Given, $\dfrac { 300 }{ x-5 } -\dfrac { 300 }{ x } =5$

$ 60x-60x+300={ x }^{ 2 }-5x$
$ { x }^{ 2 }-20x+15x-300=0$
$ (x-20)(x+15)=0$
$ x$ cannot be negative, i.e, $x=20$

Divide $16$ into two parts such that the twice of the square of the greater part exceeds the square of the smaller part by $164.$

  1. $6, 10$

  2. $6, 4$

  3. $4, 10$

  4. None of these


Correct Option: A
Explanation:

Let the larger part be $x$

So, smaller part is $16-x$
Given, 
$2\times x^2 = \left(16-x\right)^2 + 164$
$2x^2 = \left(256-32x+x^2\right) +164$
$x^2 +32x -420 = 0$
$x^2 -10x +42x - 420 =0$
$ x \left(x-10 \right) +42 \left(x - 10 \right) = 0$
$\left(x - 10 \right) \left(x+42\right)$
$\rightarrow x = 10, -42$
$\because \ x$ cannot be negative, hence $x = 10$
So, the two parts are $10, 6$

Five years hence, father's age will be $3$ times the age of his son. Five years ago, father was seven times as old as his son. The age of the son at present is

  1. $10$ years

  2. $15$ years

  3. $20$ years

  4. $40$ years


Correct Option: A
Explanation:

Let $5$ years ago, the ages of son and father were $x$ and $7x$ years respectively, then 
$\displaystyle 3\left( x+5+5 \right) =7x+5+5$
$\displaystyle \Rightarrow  3x+30=7x+10$
$\displaystyle \Rightarrow  4x=20$
$\displaystyle \Rightarrow  x=5$
Thus, present age of son $= x + 5 = 10$ years