Tag: maths

Questions Related to maths

$n^2+n+1$ is a or an ______ number for all $n\in N$

  1. even

  2. odd

  3. prime

  4. none of these


Correct Option: B
Explanation:

Consider $ {n}^{2} + n = n(n+1) $ 

We know that if $ n $ is a number , then $ n  +1 $ will be its consecutive number

And product of a number and its consecutive number is always even. For example, $ 2 \times 3 = 6 ; 9 \times 10 = 90 $

And as  $ {n}^{2} + n$ is an even number.  Then
$ {n}^{2} + n + 1 $ will be the next consecutive number of the even number , which is an odd number.

Hence, $ {n}^{2} + n + 1 $ will always be an odd number for all natural numbers.

$\displaystyle \frac {11}{4}$ is a number between

  1. $1 \ and \ 2$

  2. $2 \ and \ 3$

  3. $3\  and \ 4$

  4. $11\  and \ 12$


Correct Option: B
Explanation:

$\displaystyle \frac {11}{4}\, =\, 2\displaystyle \frac {3}{4}$
So $\displaystyle \frac {11}{4}$ lies between $2$ and $3.$

Select the correct order for defining the following terms:
I - natural number
II - imaginary number
III - rational number
IV - integer

  1. I, IV, III, II

  2. I, II, III, IV

  3. I, III, II, IV

  4. IV, I, III, II

  5. I, IV, II, III


Correct Option: A
Explanation:
  • Here natural numbers are subset of integers , integers are subset of rational numbers and rational numbers are subset of imaginary numbers
  • Therefore the correct order of defining them is shown in option $A$

(0 , - 3 ) lies on _______ .

  1. Positive x- axis

  2. Negative x-axis

  3. Positive y-axis

  4. Negative y- axis


Correct Option: D
Explanation:

Given Coordinate of Point $P$ are $(0 , -3)$


$x-coordinate = 0$
$y-coordinate = -3$

$\Rightarrow$ Point $P$ lies of y-axis

Also, As $y-coordinate < 0$
Point $P (0 , -3)$ lies on Negative y- axis.

The number of surjections from $A = {1, 2,.....n}, n \leq 2$, onto B = {a, b} is

  1. $^nP _2$

  2. $2^n - 2$

  3. $2^n - 1$

  4. none of these


Correct Option: B
Explanation:

A = {1, 2, 3, ........, n}

B = {a, b}
A has n elements.
B has 2 elements.
$\therefore$ No. of surjection is $2^{n}-2$.

If $x = \sqrt [3]{a + \sqrt {a^{2} - b^{3}}} + \sqrt [3]{a - \sqrt {a^{2} - b^{3}}}$ then $x^{3} + 3bx = $ ____________.

  1. $2a$

  2. $2b$

  3. $3a$

  4. $4a$


Correct Option: A
Explanation:
Given,
$x = \sqrt [3]{a + \sqrt {a^{2} - b^{3}}} + \sqrt [3]{a - \sqrt {a^{2} - b^{3}}}$.......(1).
Now cubing both sides we get,
$x^3=a+\sqrt{a^2-b^3}+a-\sqrt{a^2-b^3}-3$$\sqrt [3]{a + \sqrt {a^{2} - b^{3}}}  \sqrt [3]{a - \sqrt {a^{2} - b^{3}}}$$( \sqrt [3]{a + \sqrt {a^{2} - b^{3}}} + \sqrt [3]{a - \sqrt {a^{2} - b^{3}}})$
or, $x^3=2a-3bx$ [ Using (1)and $ (\sqrt [3]{a + \sqrt {a^{2} - b^{3}}})(\sqrt [3]{a - \sqrt {a^{2} - b^{3}}})=\sqrt[3]{a^2-(a^2-b^3)}=b$]
or, $x^3+3bx=2a$.

Estimate the cube root of the number $23.$

  1. $2.6$

  2. $2.1$

  3. $2.8$

  4. $1.4$


Correct Option: C
Explanation:
$\sqrt[3]{\dfrac{23 \times 1000}{1000}}$
$\sqrt[3]{23000} \div 10$
Now, find the closest cube root of $23000.$
$28^3 = 21952,$ therefore we can say that $\sqrt[3]{23}$ $\sim$ $\dfrac{28}{10} = 2.8$

Find the cube root of the number $120.$

  1. $4.1$

  2. $4.2$

  3. $4.7$

  4. $4.9$


Correct Option: D
Explanation:
We use the Babylonian Algorithm for cube roots here
According to the algorithm, the cube root is given by the formula 
$x _{n+1}=\dfrac{\left (2x _n+\left (\dfrac N{x _{n^2}}\right )\right )}{3}$
where,
  • $N$ is the number for which cube root is to be found
  • $x _{n}$ is the initial approximation of the cube root
  • $x _{n+1}$ is the subsequent improvement on the cube root 

In this case,
$N = 120$
    $x _0 =4$ since $4^3<40 <5^3$

      $ \therefore$ $x _1 = \dfrac{\left ((2\times4)+\left (\dfrac {120} {4^2}\right )\right )}{3} = \dfrac{\left (8+\left (\dfrac {120}{16}\right )\right )}{3}=4.9$

      $\Rightarrow x _2 =\dfrac{ \left (2\times4.9+\left (\dfrac {120}{(4.9)^2}\right )\right )}{3} = \dfrac{\left (9.8+\left (\dfrac {120}{24.01} \right )\right )}{3}= \dfrac{(9.8+4.99)}{3} = 4.9$

      We can see the value stabilizes around $4.9$. 

      Hence the answer is $'D'.$

      What is the approximate value of the cube root of the number $9?$

      1. $2.08$

      2. $2.19$

      3. $2.34$

      4. $2.51$


      Correct Option: A
      Explanation:

      First multiply and divide by $1,000,000,$ we get
      $\sqrt[3]{\dfrac{9\times 1000,000}{1000,000}}$
      $\sqrt[3]{9,000,000} \div 100$
      Now find the closest cube root of $9,000,000.$
      $208^3 = 8,998,912,$ therefore we can say that $\sqrt[3]{9}$ $\sim$ $\dfrac{208}{100} \sim 2.08$

      State whether true or false:
      If $x^3 = 11$, then $x=\sqrt[3] {11}$
      1. True

      2. False


      Correct Option: A
      Explanation:
      TRUE:
      Odd exponents preserve the sign of the original expression. Therefore, if ${x}^{3}$ is positive, then $x$ must itself be positive. IF ${x}^{3}=11$, then $x$ must be $\sqrt [ 3 ]{ 11 } $