Tag: maths
Questions Related to maths
If the angle between the line $x=\cfrac{y-1}{2}=\cfrac{z-3}{\lambda}$ and the plane $x+2y+3z=4$ is $\cos ^{ -1 }{ \left( \sqrt { \cfrac { 5 }{ 14 } } \right) } $, then $\lambda$ equals
How is the line $\displaystyle \frac{x-4}{4}=\frac{y-12}{12}=\frac{z-8}{8}$ related to the planes
(A) $\displaystyle x-y+z=0$
(B) $\displaystyle x-y+z-6=0$
If the angle $\theta $ between the line $\displaystyle \frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2x-y+\sqrt{\lambda} z+4=0$ is such that $\displaystyle \sin \theta =\frac{1}{3}$, then value of $\lambda $ is
If $\displaystyle \theta$ is the angle between the line
$\vec r=2i+j-k+\left ( i+j+k \right )t$ and the plane
$\displaystyle \vec r\cdot \left ( 3i-4j+5k \right )=q$, then
The projection of line $\displaystyle\frac{x}{2}=\frac{y-1}{2}=\frac{z-1}{1}$ on a plane 'P' is $\displaystyle\frac{x}{1}=\frac{y-1}{1}=\frac{z-1}{-1}$. If the plane P passes through $(k, -2, 0)$, then k is greater than.
Eccentricity of the conic $3x^{2}+2xy-3y^{2}+x+y-2=0$
If circle whose diameter is major axis of ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b>0)$ meets minor axis at point P and orthocentre of $\Delta PF _{1}F _{2}$ lies on ellipse where $F _{1}$ and $F _{2}$ are foci of ellipse, then square of eccentricity of ellipse, is
If (3,4), (5,12) are two foci of the ellipse passing thrpsough the origin. Then the eccentricity of the ellipse is
An ellipse has foci (3, 1), (1, 1) and it passes through point (1, 3). Its eccentricity is equal to
The ellipse $E _1:\dfrac{x^2}{9}+\dfrac{y^2}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinates axis. Another ellipse $E _2$ passing through the point $(0, 4)$ circumscribes the rectangle R. The eccentricity of the ellipse $E _2$ is?