Tag: maths

Questions Related to maths

In the equation $4x+y=10$, if the value of $x$ ins increased by $3$, then what would be the effect on the corresponding value of $y$

  1. The value of $y$ is decreased by $12$

  2. The value of $y$ is decreased by $2$

  3. The value of $y$ is increased by $3$

  4. The value of $y$ will be $3$ times as large


Correct Option: A

Evaluate:
$( b - c + d + a ) ( d + a - b + c ) + ( c - d + a + b ) ( b + c + d - a )$

  1. $4 ( a d + b c )$

  2. $2 ( a d + b c )$

  3. $3 ( a d + b c )$

  4. $ ( a d + b c )$


Correct Option: A
Explanation:
$(b-c+d+a)(d+a-b+c)+(c-d+a+b)(b+c+d-a)$

$=[(d+a)+(b-c)][(d+a)-(b-c)]+[(b+c)+(a-d)][(b+c)-(a-d)]$

$[\because (a-d)^2=(d-a)^2]$

$=(d+a)^2-(b-c)^2+(b+c)^2-(a-d)^2$

$=(d+a)^2-(d-a)^2+(b+c)^2-(b-c)^2$

$=4ad+4bc$

$=4(ad+bc)$.

Evaluate $\sqrt {13+\sqrt {44+10^2}}$.

  1. $12$

  2. $5$

  3. $25$

  4. None


Correct Option: B
Explanation:

$\sqrt {13+\sqrt {44+10^2}}\$

$=\sqrt{13+\sqrt {44+100}}\$
$=\sqrt {13+144}\$
$=\sqrt {13+12}\$
$=\sqrt {25}=5$

If $f(x)=x^2+x+5$ then find $f(1)$
  1. $7$

  2. $5$

  3. $4$

  4. None of the above


Correct Option: A
Explanation:
$f(x)=x^2+x+5$

Put $x=1$

$\Rightarrow$$f(1)=1+1+5$

$\Rightarrow$$f(1)=7$

$x^2+y^2 =100$ find $x$ if $y=6$

  1. $\pm 8$

  2. $\pm \sqrt 8$

  3. $\pm 64$

  4. $\pm 4$


Correct Option: A
Explanation:

$x^2+y^2=100\y=6\x^2+6^2=100\x^2=100-36\x^2=64\x=\pm 8$

If ${a}^{2}+{b}^{2}+{c}^{2}-ab-bc-ca=0$, then

  1. $a+b=c$

  2. $b+c=a$

  3. $c+a=b$

  4. $a=b=c$


Correct Option: D
Explanation:
Given,

$a^2+b^2+c^2-ab-bc-ca=0$

$\Rightarrow 2(a^2+b^2+c^2-ab-bc-ca)=2(0)$

$\Rightarrow 2a^2+2b^2+2c^2-2ab-2bc-2ca=0$

$\Rightarrow (a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0$

$(a-b)^2+(b-c)^2+(c-a)^2=0$

$\Rightarrow a-b=b-c=c-a=0$

$\therefore a=b=c$

If $\displaystyle b=6-\left [ \frac{4b+3}{2a-5} \right ]$, express a in terms of b.

  1. $\displaystyle a=\frac{33-b}{2\left ( 6-b \right )}$

  2. $\displaystyle a=\frac{b-33}{2\left ( 6-b \right )}$

  3. $\displaystyle a=\frac{33-b}{2\left ( b-6 \right )}$

  4. none of the above


Correct Option: A
Explanation:

Given,
$ b = 6 - \left[ \frac { 4b+3 }{ 2a-5 }  \right]  $
$ => \left[ \frac { 4b+3 }{ 2a-5 }  \right] = 6 - b $
$ => 4b + 3 = (6-b)(2a-5) $
$ => 4b + 3 = 12a - 30 - 2ab +5b $
$ => 12a - 33  -2ab + b = 0 $
$ =>  a(12 -2b) = 33 - b $
$ => 2a(6-b) = 33-b $
$ => a = \frac {33-b}{2(6-b)} $

Given $\displaystyle b=\frac{2a}{a-2}$ and $\displaystyle c=\frac{3b-4}{4b+3}$, express c in terms of a.

  1. $\displaystyle c=\frac{2a+8}{11a+6}$

  2. $\displaystyle c=\frac{2a-8}{11a-6}$

  3. $\displaystyle c=\frac{2a+8}{11a-6}$

  4. none of the above


Correct Option: C
Explanation:

Given, $ c = \frac {3b-4}{4b + 3} $

But, $ b = \frac {2a}{a-2} $
Hence, $ c = \frac {3(\frac {2a}{a-2} )-4}{4(\frac {2a}{a-2} ) + 3} $
$ => c = \frac {6a-4a + 8}{8a +3a - 6} $
$ => c = \frac {2a+8}{11a -6} $

The value of $100 - { ( 7 $of $8 + 4 ) \div 5 } $ is

  1. $92$

  2. $78$

  3. $96$

  4. $88$


Correct Option: D
Explanation:

We apply BODMAS rule to find the value of the given expression. According to BODMAS rule, if an expression contains brackets we have to first solve or simplify the bracket followed by of (powers and roots etc.), then division, multiplication, addition and subtraction from left to right.


Since 'of' stands for multiplication, therefore the given expression becomes 
$100-[(7\times 8+4)\div 5]$ and apply BODMAS rule as shown below:
$ \Rightarrow 100-[(56+4)\div 5]\ \Rightarrow 100-(60\div 5)\ \Rightarrow 100-12\ \Rightarrow 88$
Hence, the value of $100-[(7\times 8+4)\div 5]$ is $88$.

The value of $12\div \dfrac {1}{2}+0.5\times \dfrac {5}{2}-2$ is

  1. 23.25

  2. 12.25

  3. 13.25

  4. none


Correct Option: A
Explanation:

 

$12\div \dfrac {1}{2}+0.5\times \dfrac {5}{2}-2 = 24 + 1.25 - 2 = 23.25$