Tag: maths
Questions Related to maths
Line x cos$\alpha $+yin$\alpha $=p is a normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 $, if
Line $ x \cos \alpha + y \sin \alpha = p $ is a normal to the hyperbola $ \frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1 $, if
A straight line is drawn parallel to the conjugate axis of the hyperbola $\dfrac{{{x^2}}}{{{a^2}}} - \dfrac{{{y^2}}}{{{b^2}}} = 1$ to meet it and the conjugate hyperbola respectively in the point $P$ and $Q$. The normals at $p$ and $Q$ to the curves meet on
If the normal at $\left (ct _1,\dfrac { c}{t _1}\right)$ on the hyperbola $xy = c^2$ cuts the hyperbola again at $\left (ct _2, \dfrac {c}{t _2}\right)$, then $t _2^3 t _2$ $=$
If the tangent and normal to a rectangular hyperbola cut off intercepts $x _1$ and $x _2$ on one axis and $y _1$ and $y _2$ on the other axis, then
The number of normal to the hyperbola $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ from an external point is
The normal to the rectangular hyperbola $xy=-c^2$ at the point $'t _1'$ meets the curve again at the point $'t _2'$. The value of $t _1^3 \cdot t _2$ is
If the normal at '$\theta $' on the hyperbola $\cfrac { { x }^{ 2 } }{ { a }^{ 2 } } -\cfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1$ meets the transverse axis at $G$ and $A$ and $A'$ are the vertices of the hyperbola, then $AG.A'G$ $=$
If the normal at $'\theta'$ on the hyperbola $\displaystyle \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ meets the transverse axis at G, and A and A' are the vertices of the hyperbola, then AG.A'G $=$
The equation of normal at $\left( at,\dfrac { a }{ t } \right)$ to the hyperbola $xy={ a }^{ 2 }$ is ________________________.