Tag: maths

Questions Related to maths

Equation of the plane passing through the points $(2, 2, 1)$ and $(9, 3, 6)$, and perpendicular to the plane $2x+6y+6z-1=0$ is-

  1. $3x+4y+5z=9$

  2. $3x+4y-5z=9$

  3. $3x-4y+5z=9$

  4. None of the above.


Correct Option: B
Explanation:

Equation of plane passes through $(2,2,1)$ is given by,
$a(x-2)+b(y-2)+c(z-1) = 0.......(A)$
Given it also passes through $(9,3,6)$
$\Rightarrow 7a+b+5c=0 ......(1)$
and this plane is perpendicular to plane $2x+6y+6z-1=0$
$\Rightarrow 2a+6a+6c=0 .....(2)$
Solving (1) and (2), we get $ a= \dfrac{-3a}{5}, b = \dfrac{-4a}{5}$
Putting these values in (A) our required plane is,
$3x+4y-5z=9$

The cartesian equation of the plane $\overrightarrow { r } =\left( 1+\lambda -\mu  \right) i+\left( 2-\lambda  \right) j+\left( 3-2\lambda +2\mu  \right) k$ is:

  1. $2x+y=5$

  2. $2x-y=5$

  3. $2x+z=5$

  4. $2x-z=5$


Correct Option: C
Explanation:

We have $\overrightarrow { r } =\left( 1+\lambda -\mu  \right) i+\left( 2-\lambda  \right) j+\left( 3-2\lambda +2\mu  \right) k$

$\Rightarrow \overrightarrow { r } =\left( i+2j+k \right) +\lambda \left( i=j-2k \right) +\mu \left( -i+2k \right) $
which is a plane through $\overrightarrow { a } =i+2j+3k$ and parallel to the vectors
$\overrightarrow { b } =i-j-2k$ and $\overrightarrow { c } =-i+2k$
Therefore, it is perpendicular to the vector
$\overrightarrow { n } =\overrightarrow { b } \times \overrightarrow { c } =-2i-k$
Hence, its vector equation is 
$\left( \overrightarrow { r } -\overrightarrow { a }  \right) .\overrightarrow { n } =0\Rightarrow \overrightarrow { r } .\overrightarrow { n } =\overrightarrow { a } .\overrightarrow { n } \ \Rightarrow \overrightarrow { r } .\left( -2i-k \right) =-2-3\Rightarrow \overrightarrow { r } \left( 2i+k \right) =5$
So, the cartesian equation is
$\left( xi+yj+zk \right) .\left( 2i+k \right) =5\Rightarrow 2x+z=5$

If $lx+my+nz=p$ is equation of plane in normal form, then :

  1. $l^2+m^2+n^2=1$

  2. l, m , n are d.c's of a normal to the plane

  3. p > 0

  4. All of these


Correct Option: A

The equation of the plane through the points $(2,3,1)$ and $(4,-5,3)$ and parallel to $x$-axis is

  1. $x-z-1=0$

  2. $4x+y-11=0$

  3. $y+4z-7=0$

  4. None of these


Correct Option: C
Explanation:
The line segment passing through $(2,3,1)$ and $(4,-5,3)$ is given by $2i-8j+2k$. 
Hence, the normal to the plane is given by $(2i-8j+2k) \times i=2j+8k$. 
Hence, the equation of plane is given by $2y+8z+d=0$. 
Since it passes through $(2,3,1)$ we get $6+8+d=0 \Rightarrow d=-14$. 
Thus, the equation of plane is given by $y+4z-7=0$.  

Equation of the plane passing through the point $(1, 1, 1)$ and perpendicular to each of the planes $x+ 2y+ 3z= 7$ and $2x- 3y +4z= 0$, is

  1. $17x- 2y +7z= 12$

  2. $17x+ 2y -7z= 12$

  3. $17x+ 2y +7z= 12$

  4. $17x- 2y -7z= 12$


Correct Option: B
Explanation:

Let $ax+by+cz=1$ be the desired plane.
Since, it is perpendicular to $x+2y+3z=7$ & $2x-3y+4z=0$
Therefore, $a+2b+3c=0$        .... (1)
and $2a-3b+4c=0$       ...(2)
and it passes through $(1,1,1)$
Therefore, $a+b+c=1$      ...(3)
Solving $(1),(2)$ and $(3)$ simultaneously, we get

$a=\dfrac {17}{12}$, $b=\dfrac {1}{6}$, $c=-\dfrac {7}{12}$
Therefore, desired plane is $17x+2y-7z=12$

Ans: B

The cartesian form of the plane 
$ { r } =(s-2t)\hat { i+(3-t)\hat { j+(2s+t)\hat { k }  }  } $ is 

  1. $ 2 x-5 y-z-15=0$

  2. $2 x-5 y+z-15=0$

  3. $2 x-5 y-z+15+0$

  4. $2 x+5 y-z+15=0$


Correct Option: C
Explanation:

Since $\overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}$ is the proof any vector $(x,y,z)$on the plane. The given equation can be written as.

$x\hat{i}+y\hat{j}++z\hat{k}=(s—2t)\hat{i}+(3-t)\hat{j}+(2s+t)\hat{k}\\x=(s-2t)\quad y=(3-t)\quad z=2s+t$

Similarly We get $x-2y=s-6$ and $y+z=3+2s$

Now eliminating $s$ we get $2(x-2y)-(y+z)=-15$

$2x-5y-z+15=0$ is the required form of the equation.

The general equation of plane which is parallel to x-axis is

  1. $ax+by+cz+d=0, a\neq 0,b\neq 0,c\neq 0$

  2. $by+ax+d=0, a\neq 0,b\neq 0$

  3. $ax+cz+d=0, a\neq 0.c\neq 0$

  4. $by+cz+d=0, b\neq 0,c\neq 0$


Correct Option: D
Explanation:
Generally a plane in 3-space has the equation

$ax + by + cz +d = 0,$

here, it is parallel to $x$ axis

hence the equation becomes,
$by + cz +d = 0,$

where at least one of the numbers a, b, c and d must be nonzero
finally the equation becomes,

$by +cz+d =0,b≠0, c≠0.$

Equation of plane through $(2, 1,4)$ and having $\mathrm{d}.\mathrm{c}$'s of its normal $\alpha,\ \beta,\ \gamma$ is

  1. $\alpha x+\beta y+\gamma z =2\alpha+\beta+4\gamma$

  2. $\displaystyle \dfrac{x-2}{\alpha}+\dfrac{y-1}{\beta}+\dfrac{z-4}{\gamma}=0$

  3. $\alpha x+\beta y+\gamma z =1$

  4. $\displaystyle \dfrac{\alpha x}{2}+\dfrac{\beta y}{1}+\dfrac{\gamma z}{4}=0$


Correct Option: A
Explanation:

Since, the direction ratios of the normal are $ \alpha , \beta , \gamma $
The equation of the plane will be of the form, $ \alpha x + \beta y + \gamma z  = d$
And the plane passes through the point $(2,1,4)$.
Hence, equation of plane is $ \alpha x + \beta y + \gamma z $ = $ 2 \alpha + \beta  + 4 \gamma  $.

If the equation of the plane passing through the points $(1,2,3)$, $(-1,2,0)$ and perpendicular to the $zx$ - plane is $ax + by + cz + d$ $=$ $ 0$ $(a>0)$, then

  1. $a=0$ and $c=0$

  2. $a+d=0$

  3. $c+d-5=0$

  4. $a+c+d-4=0$


Correct Option: D

A plane $\Pi$ passes through the point $(1,1,1)$. If $b,c, a$ are the direction ratios of a normal to the plane, where $a, b, c (a<b<c)$ are the prime factors of $2001$, then the equation of the plane $\pi$ is

  1. $29x+31y+3z=63$

  2. $23x+29y-29z=23$

  3. $23x+29y+3z=55$

  4. $31x+27y+3z=71$


Correct Option: C
Explanation:
Sol. By verification $2001=23 \times29 \times3$
$\therefore 23x+29y+3z=55$