Tag: maths

Questions Related to maths

Subtract $2\ \text{kg}\ 54\ \text{g}$ from $12\ \text{kg}\ 530\ \text{g}$.

  1. $10\ \text{kg}\ 476\ \text{g}$

  2. $104\ \text{kg}\ 76\ \text{g}$

  3. $1\ \text{kg}\ 476\ \text{g}$

  4. $1047\ \text{kg}\ 6\ \text{g}$


Correct Option: A
Explanation:
We know $1$ kg $=1000$ gm
(i) We have to subtract   $2$ kg  $54$ gm from $12$ kg $530$ gm
$2$ kg $54$ gm $ = 2$ kg $+$ $54$ gm $=A $    .......(1)
$12$ kg $530$ gm $ = 12$ kg $+$ $530$ gm $=B $     .......(2)
Now as per the question, we have to subtract $A$ from $B$
$B-A = [12$ $\text{kg}$ $530$  $\text{gm}$] $-$[$2$ $\text{kg}$ $54$ $\text{gm}$ $]$
Subtract like terms 
$B-A=\left[12 \ \text{kg} -2 \ \text{kg}\right]+\left[530 \ \text{gm}-54 \ \text{gm}\right]$

$B-A = 10  $ kg $+ $ $476$ gm
So, option A is correct

Subtract $21\ kg\ 370\ g$ from $37\ kg\ 675\ g$ without conversion into gram.

  1. $15\ kg\ 305\ g$

  2. $15\ kg\ 470\ g$

  3. $16\ kg\ 305\ g$

  4. $16\ kg\ 300\ g$


Correct Option: C
Explanation:

Let $  B = $   $37$ $kg$  $675$  $gm$ 

$A = $   $21$ $kg$  $370$  $gm$ 
(i)  Subtract   $21$ $kg$  $370$  $gm$ from $37$ $kg$  $675$  $gm$

$21$ $kg$  $370$  $gm$ $ = 21kg + 370gm$  $=A $   ...................(1)

$37$ $kg$  $675$  $gm$ $ = 37kg + 675gm$  $=B $   ...................(2)


Now as per the question we have to subtract A from B

$B-A = [37$ $kg$  $+ $  $675$  $gm$] $ - $ [$21$ $kg$ $+ $  $370$  $gm$]

$B-A = [37$ $kg$ $- $ $21$  $kg$] $+  $ [$675$ $gm$ $-$ $370$  $gm$]


$B-A = 16  $  $kg $ $+  $  $305$ $gm$ 

$16  $  $kg $  $305$ $gm$ is the answer.

A truck was loaded with $482\ kg\ 100\ g$ of pumpkins and $307\ kg\ 432\ g$ of watermelons. Find the total weight carried by the truck.

  1. $78\ kg\ 953\ g$

  2. $789\ kg\ 532\ g$

  3. $89\ kg\ 532\ g$

  4. $780\ kg\ 432\ g$


Correct Option: B
Explanation:
Let $482$ $kg$  $100$  $gm$ $ = 482kg + 100gm$  $=A =  $  Weight of  Pumpkins
$307$ $kg$  $432$  $gm$ $ = 307kg + 432gm$  $=B =  $  Weight of  Watermelons
(i)  Given that, we have to add $482$ $kg$  $100$  $gm$   to $307$ $kg$  $432$  $gm$
$ 482kg + 100gm$  $=A $   ...... (1)
$  307kg + 432gm$  $=B $   ...... (2)


Now as per the question we have to add A and B

$A+B = [482$ $kg$  $100$  $gm$] $+ $ [$307$ $kg$  $432$  $gm$] 
$A+B = [482$ $kg$ $+$  $307$  $kg$] $+ $ [$100$ $gm$ $+$  $432$  $gm$]

$A+B = 789  $  $kg$ $+ $   $532$ $gm$ 
The Total weights carried  in Truck is  $ 789  $  $kg$   $532$ $gm$
Hence, option $B$ is correct

A shopkeeper purchased $392\ kg\ 500\ g$ of orange. Later on, he found that $56\ kg\ 460\ g$ of oranges were rotten. Find the quantity of oranges in good condition.

  1. $330\ kg\ 400\ g$

  2. $336\ kg\ 4\ g$

  3. $336\ kg\ 40\ g$

  4. $33.6\ kg\ 40\ g$


Correct Option: C
Explanation:
Quantity of oranges in good condition$=\left( 392.500-56.460 \right) ㎏$
$=336.040ℊ\Rightarrow$ $336$ ㎏ $40$ gm

Add $95\ kg\ 45\ g$ and $45\ kg\ 300\ g$.

  1. $14\ kg\ 34\ g$

  2. $140\ kg\ 300\ g$

  3. $14\ kg\ 345\ g$

  4. $140\ kg\ 345\ g$


Correct Option: D
Explanation:

We know that, $gram$  is abbreviated as $gm$

$1$  $kg =1000$  $gram$


(i) To add   $95$ $kg$  $45$  $gm$  to $45$ $kg$  $300$  $gm$

$95$ $kg$  $45$  $gm$ $ = 95kg + 45gm$  $=A $   ...................(1)

$45$ $kg$  $300$  $gm$ $ = 45kg + 300gm$  $=B $   ...................(2)


Now as per the question we have to add A and B

$A+B = [95$ $kg$  $45$  $gm$] $+ $ [$45$ $kg$  $300$  $gm$]

$A+B = [95$ $kg$ $+$  $45$  $kg$] $+ $ [$45$ $gm$ $+$  $300$  $gm$]


$A+B = 140  $  $kg$ $+ $   $345$ $gm$ 

So, Option $D$ is correct

If Raina weighs $54\ kg\ 43\ g$ and Rohit weighs $60\ kg\ 760\ g$. Then, the sum of weights of Raina and Rohit is :

  1. $114\ kg\ 803\ g$

  2. $115\ kg\ 19\ g$

  3. $110\ kg\ 703\ g$

  4. $104\ kg\ 803\ g$


Correct Option: A
Explanation:
Let $54$ $kg$  $43$  $gm$ $ = 54kg + 43gm$  $=A =  $  Weight of  Raina

$60$ $kg$  $760$  $gm$ $ = 60kg + 760gm$  $=B =  $  Weight of  Rohit

(i) We have to add $54$ $kg$  $43$  $gm$ to $60$ $kg$  $760$  $gm$

$ 54kg + 43gm$  $=A $   ...................(1)

$  60kg + 760gm$  $=B $   ...................(2)


Now as per the question we have to add A and B

$A+B = [54$ $kg$  $43$  $gm$] $+ $ [$60$ $kg$  $760$  $gm$]

$A+B = [54$ $kg$ $+$  $60$  $kg$] $+ $ [$43$ $gm$ $+$  $760$  $gm$]


$A+B = 114  $  $kg$ $+ $   $803$ $gm$ 

The sum of weights of Raina and Rohit is  $ 114  $  $kg$   $803$ $gm$
Hence, Option $A$ is correct

Average weight of $25$ persons is increased by $1$ kg when one man weighing $60$ kg is replaced by a new person. Weight of new person is

  1. $50$ kg

  2. $61$ kg

  3. $86$ kg

  4. $85$ kg


Correct Option: D
Explanation:

Total weight increased $=1\times 25=25 kg$
$\therefore$ weight of new person is $60+25=85 kg$

If $A$ weighs $43\ kg\ 234\ g$ and $B$ weighs $56\ kg\ 450\ g$. Then the difference between the weights of $A$ and $B$ is :

  1. $12\ kg\ 811\ g$

  2. $13\ kg\ 216\ g$

  3. $13\ kg\ 306\ g$

  4. $10\ kg\ 216\ g$


Correct Option: B
Explanation:
The weight of $A = 43\ kg\ 234\ g$

the weight of $A = 56\ kg\ 450\ g$
(i) Difference between weights of $A$ and $B$ is obtained by subtracting $43$ $kg$  $234$  $gm$ from $56$ $kg$  $450$  $gm$

$43$ $kg$  $234$  $gm$ $ = 43kg + 234gm$  $=A $   .... (1)

$56$ $kg$  $450$  $gm$ $ = 56kg + 450gm$  $=B $   ..... (2)


Now as per the question we have to subtract A from B

$B-A = [56\ kg+ 450\ gm] - [43\ kg+234\ gm$

$B-A = [56\ kg-43\ kg]+ [450\ gm -234\ gm] $


$B-A = 13\ kg\ 216\ gm$
So, Option $B$ is correct

Add $17\ kg,13\ kg\ 940\ g$ and $15\ kg\ 65\ g$.

  1. $40\ kg\ 65\ g$

  2. $4\ kg\ 650\ g$

  3. $46\ kg\ 50\ g$

  4. $46\ kg\ 5\ g$


Correct Option: D

Lakshmi is 150 cm tall .What is her height in metres?

  1. 1 metre

  2. 1.5 metres

  3. 15.0 metres

  4. 0.15 metres


Correct Option: B
Explanation:
Since 1 m=100 cm
$\therefore$150 cm=$\displaystyle \frac{150}{100}=1.5m$