Tag: maths

Questions Related to maths

How many small cubical blocks side $5$cm can be cut from a cubical block whose each edge measure $20$cm?

  1. $56$

  2. $48$

  3. $64$

  4. $52$


Correct Option: A

how many bricks each measuring $250 cm$ by $12.5 cm$ by $7.5 cm$ will be required to build a wall 5 m long ,3m high and 20 m thick?

  1. $148$

  2. $128$

  3. $168$

  4. $158$


Correct Option: A

how many bricks are required to build a wall 15 m long 3 m high and 50 cm thick ,if each brick measures 25 cm by 12 cm by 6 cm?

  1. $16500$

  2. $14500$

  3. $12500$

  4. $10500$


Correct Option: A

How many cubes each of surface area $24 sq\ m$ can be made out a meter cube, without any wastage?

  1. $75$

  2. $250$

  3. $125$

  4. $62$`


Correct Option: A

If the volumes of two cubes are in the ratio $8:1$, then the ratio of their edges is

  1. $8:1$

  2. $2\sqrt 2:1$

  3. $2:1$

  4. none of these


Correct Option: C
Explanation:

Let $V _1$ and $V _2$ be two volume of cubes.

$l _1$ and $l _2$ be edges of the two cubes.
We know that,
Volume of cube $V=l^3$
So,
$\Rightarrow$  $\dfrac{V _1}{V _2}=\dfrac{l _1^3}{l _2^3}$

$\Rightarrow$  $\dfrac{8}{1}=\left(\dfrac{l _1}{l _2}\right)^3$             [ Given ]

$\therefore$  $\dfrac{l _1}{l _2}=\dfrac{2}{1}$

$\therefore$  Ratio of their edges is $2:1$.

The volume of a cube whose surface area is $96{cm}^{2}$, is

  1. $16\sqrt 2{cm}^{3}$

  2. $32{cm}^{3}$

  3. $64{cm}^{3}$

  4. $216{cm}^{3}$


Correct Option: C
Explanation:

Let $l$be the side of cube.

Surface area of cube $=6l^2$
$\Rightarrow$  $96=6l^2$                      [ Given ]
$\Rightarrow$  $l^2=16$
$\therefore$  $l=4\,cm$
Now,
$\Rightarrow$  Volume of cube $=l^3$
                                  $=(4)^3$
                                  $=64\,cm^3$

If each edge of a cube, of volume $V$, is doubled, then the volume of the new cube is

  1. $2V$

  2. $4V$

  3. $6V$

  4. $8V$


Correct Option: D
Explanation:

Let $a$ be the initial edge of the cube.

So, 
Volume of cube $V=a^3$
In the new cube,
Let $a'$ be the edge of new cube
$\therefore$  $a'=2a$               [ Given ]
Volume of new cube,
$V'=(a')^3$
      $=(2a)^3$
      $=8a^3$
      $=8V$                        [ Since, $a^3=V$ ]
Volume of the new cube is $8V.$

If ${A} _{1},{A} _{2}$ and ${A} _{3}$ denote the areas of three adjacent faces of a cuboid, then its volume is

  1. ${A} _{1}{A} _{2}{A} _{3}$

  2. $2{A} _{1}{A} _{2}{A} _{3}$

  3. $\sqrt{{A} _{1}{A} _{2}{A} _{3}}$

  4. $\sqrt [ 3 ]{ { A } _{ 1 }{ A } _{ 2 }{ A } _{ 3 } } $


Correct Option: C
Explanation:

It is given that, $A _,A _2,A _3$ be the areas of $3$ adjacent faces of cuboid

Let $V$ be the volume of cuboid.
Let dimensions of cuboid $=l\times b\times h$
$A _1=l\times b$
$A _2=b\times h$
$A _3=h\times l$
$\Rightarrow$  $V=l\times b\times h$
Now,
$\Rightarrow$  $A _1A _2A _3=lb\times bh\times hl$
$\Rightarrow$  $A _1A _2A _3=l^2b^2d^2$

$\Rightarrow$  $A _1A _2A _3=(lbh)^2$
$\therefore$  $A _1A _2A _3=V^2$
$\therefore$  $V=\sqrt{A _1A _2A _3}$

A beam 4m long, 50cm wide and 20cm deep is made of wood which weighs 25$kg$ per $m^3$. Find the weight of the beam.

  1. $10 kg$

  2. $12 kg$

  3. $13 kg$

  4. $15 kg$


Correct Option: A
Explanation:

Given,length $=4m$
breadth $=50 cm=0.5 m$
height $20 cm=0.2 m$
Volume of beam $=l \times b \times h=0.4 m^3$
Weight of $1$ $m^3$ wood is $25$ kg
Weight of $0.4$  $m^3$ cubiodal beam$=25\times 0.4=10 $kg

If the radius of the base of a right circular cylinder is halved, keeping the  height same, what is the ratio of the volume of the reduced cylinder to that of the original.

  1. $1:3$

  2. $1:5$

  3. $1:4$

  4. $1:7$


Correct Option: C
Explanation:

circular cylinder's radius=r
height=h
keeping the height same,  radius is halved
radius of new 
circular cylinder=r/2
So, ratio of volume = volume of reduced cylinder/volume of original cylinder
$Ratio=\Pi { r /2}^{ 2 }h/\Pi { (r) }^{ 2 }h$
$Ratio=1/4$