Tag: chemistry

Questions Related to chemistry

For the elementary reaction 2A $\rightarrow $ C ,the concentration of A after 30 minutes was found to be 0.01 mole/lit. If the rate constant of the reaction is $2.5 \times 10^{-2}$ lit mole$^{-1}$ sec$^{-1}$. The rate of the reaction at 30 minutes is:

  1. $2.5 \times 10^{-4}$ lit mole$^{-1}$ sec$^{-1}$

  2. $2.5 \times 10^{-6}$ lit mole$^{-1}$ sec$^{-1}$

  3. $2.5 \times 10^{-2}$ lit mole$^{-1}$ sec$^{-1}$

  4. $2.5 \times 10^{-8}$ lit mole$^{-1}$ sec$^{-1}$


Correct Option: B
Explanation:
Rate of Reaction = Rate Constant  x ${ [A] }^{ 2 }$

 $= 2.5 \times { 10 }^{ -2 } \times   { [0.01] }^{ 2 }$

$ =  2.5  \times   { 10 }^{ -2 }  \times   { 10 }^{ -4 }$

$=  2.5  \times   { 10 }^{ -6 }$  lit   mol $^{ -1 }$ sec$^{ -1 }$

Hence, the correct option is $\text{B}$

The specific rate of a reaction is $1.51 \times10^{-4}$ lit mole$^{-1}$ sec$^{-1}$. If the reaction is commenced with 0.2 mole lit$^{-1}$ of the reactant, the initial rate of the reaction in mole lit$^{-1}$ sec$^{-1}$ is:

  1. $1.5 \times 10^{-4}$

  2. $3 \times 10^{-5}$

  3. $6 \times 10^{-6}$

  4. $6 \times 10^{-5}$


Correct Option: C
Explanation:

For a general reaction of order $n$, the units of rate constant is given as $(mol/litre)^{1-n}sec^{-1}$.
So for our question, the unit of rate constant is $(mol/litre)^{-1}sec^{-1}$ so $ 1-n = -1$.


So, the value of $n =2$, so the reaction is of second order.

The rate is given as $r = k[A]^{2}$. Specific rate of equation is the rate for concentration of 1 $mol/litre$. 

From this, the value of k is $1.51 \times1 0^{-4}$.
$r = 1.51 \times 10^{-4}[A]^{2}$.
[A] =  $0.2 mol/litre$. 

Initial rate is $6 \times1 0^{-6}$.

Hence, option C is correct.

Read the following table and chose the appropriate option


Rate equation Units of K
I) rate $=$ k[A] a) mol lit$^{-1}$ sec $^{-1}$
II) rate $=$ k[A][B] b) mol$^{-2}$ lit$^{2}$ sec $^{-1}$
III) rate $=$ k[A][B]$^2$ c) sec $^{-1}$
IV) rate $=$ k d) lit mol$^{-1}$ sec $^{-1}$

  1. I - d, II - c, III - a, IV - b

  2. I - c, II - d, III - b, IV - a

  3. I - a, II - b, III - c, IV - d

  4. I - b, II - a, III - d, IV - c


Correct Option: B
Explanation:

Units of k $= mole^{1-n} lit^{n-1} sec^{-1}$ , where n is the order of reaction.


For option A, its first order reaction. Rate constant $=sec^{-1}$

For option B, its second order reaction. Rate constant $=mole^{-1} lit sec^{-1}$


For option C, its third order reaction. Rate constant $=mole^{-2} lit^{2} sec^{-1}$

For option D, its zero order reaction. rate constant $=mole/lit sec^{-1}$

Hence, the correct option is $\text{B}$

Identify the reaction order from each of the following rate constants.
(i) $k=2.3 \times 10^{-5} L \quad mol^{-1} \quad s^{-1}$
(ii) $k=3 \times 10^{-4} \quad s^{-1}$

  1. (i) First order (ii) Second order

  2. (i)Second order (ii) First order

  3. (i) Zero order (ii) First order

  4. None


Correct Option: B
Explanation:

(i) Rate of the reaction is given by,

$Rate=k\times [A]^x$, where x is the order of reaction
$(\dfrac{mol}{L})=2.3\times 10^{-5}L(mol^{-1})(s)^{-1}[A]^x$
$({\dfrac{mol}{L}})^2=constant(s^{-1})[\dfrac{mol}{L}]^x$
Therefore, $x=2$ and the reaction is second order
(ii)$Rate=k\times [A]^x$, where x is the order of reaction
$(\dfrac{mol}{L})=3\times 10^{-4}(s)^{-1}[A]^x$
$({\dfrac{mol}{L}})=constant(s^{-1})[\dfrac{mol}{L}]^x$
Therefore, $x=1$ and reaction is first order

Units of rate constant for the first and zero order reactions in terms of molarity M units are respectively:

  1. $sec^{-1},\;Msec^{-1}$

  2. $sec^{-1},\;M$

  3. $Msec^{-1},\;sec^{-1}$

  4. None of the above


Correct Option: A
Explanation:

The unit of the rate constant K is $\left (\text {Molarity} \right )^{1-n}time^{-1}.$


Here, n is the order of the reaction.

For first order reaction, $n=1.$

The unit of the rate constant K is $\left ( \text{Molarity} \right )^{1-1}sec^{-1}=sec^{-1}.$

For zero order reaction, $n=0.$

The unit of the rate constant K is $\left ( \text{Molarity} \right )^{1-0}sec^{-1}=\left ( \text{Molarity} \right )sec^{-1}=\left (M \right )sec^{-1}.$

Consider the reaction, $2A + B \rightarrow$ Products, When concentration of B alone was doubled, the rate did not change. When the concentration of A alone was doubled, the rate increased by two times. The unit of rate constant for this reaction is:

  1. $s^{-1}$

  2. $L\ mol^{-1}s^{-1}$

  3. Unitless

  4.  $mol\ L^{-1}s^{-1}$


Correct Option: A
Explanation:
When the concentration of B alone was doubled, the rate did not change. Hence the reaction is zero order in B.

When the concentration of A alone was doubled, the rate increased by two times. Hence, the reaction is of first-order in A.

$r=k\left [ A \right ]^{1}\left [ B \right ]^{0}$

The overall order of the reaction is 1.

For the first-order reaction, the unit of k is $sec^{-1}$.

Hence, the correct option is $\text{A}$

The following mechanism has been proposed for the reaction of $NO$ with $\displaystyle Br _{2}$ to form $NOBr$


$NO(g)+Br _{2}(g)\rightleftharpoons NOBr _{2}(g)$
$NOBr _{2}(g)+NO(g)\rightarrow 2NOBr(g)$


If the second step is the rate determining step,the order of the reaction with respect to $NO(g)$ is:
  1. 2

  2. 1

  3. 0

  4. 3


Correct Option: A

Taking the reaction $x+2y\rightarrow$ prodcuts, to be of second order, which of the following are the rate law expressions for the reaction :


(I) $\cfrac{dx}{dt}=K[x][y]$  (II) $\cfrac{dx}{dt}=K[x]{[y}]^{2}$

(III) $\cfrac{dx}{dt}=k{[x]}^{2}$  (IV) $\cfrac{dx}{dt}=K[x]+K{[y]}^{2}$

  1. I only

  2. I and III only

  3. I and II only

  4. I and IV only


Correct Option: C

The rate of formation of ${SO} _{3}$ in the reaction $2{SO} _{2}+{O} _{2}\rightarrow 2{SO} _{3}$ is $100g{min}^{-1}$. Hence, rate of disappearance of ${O} _{2}$ is

  1. $50g{min}^{-1}$

  2. $100g{min}^{-1}$

  3. $20g{min}^{-1}$

  4. $40g{min}^{-1}$


Correct Option: A

Reaction $A+B\longrightarrow C+D$ follows rate law, $r=k{ \left[ A \right]  }^{ 1/2 }{ \left[ B \right]  }^{ 1/2 }$ starting with $1M$ of $A$ and $B$ each. What is the time taken for concentration of $A$ become $0.1M$?
[Given $2.303\times { 10 }^{ -2 }sec^{ -1 }$].

  1. $10sec$

  2. $100sec$

  3. $1000sec$

  4. $434sec$


Correct Option: B
Explanation:

The rate constant is $2.303\times { 10 }^{ -2 }sec^{ -1 }$. The overall reaction order is 1.


$t = \dfrac {2.303}{k}log \dfrac {a}{a-x}$

$t = \dfrac {2.303}{2.303 \times 10^{-2}}log \dfrac {1}{0.1}=100$

Hence, the time taken to consume 90% of concentration is 100 sec.