Tag: physics
Questions Related to physics
Let $f(x) = \left{\begin{matrix} 2 + 1,& x \leq 1\ x^{2} + 2, & 1 < x \leq 2\ 4x - 2, & x > 2\end{matrix}\right.$ then the number of points where $f(x)$ is non-differentiable, is equal to
$f(x)=|\cos x|$ is not differentiable for the points given by $x=?$
If $g$ is the inverse of $f$ and $f'(x)=\dfrac{1}{1+x^{3}}$, then $g'(x)$ is equal to.
If $f(x)=(x^2-4)\left|x^3-6x^2+11x-6\right|+\dfrac{x}{1+|x|}$, then the set of points at which the function $f(x)$ is not differentiable is?
If $\sqrt { { x }^{ 2 }+{ y }^{ 2 } } ={ e }^{ t }$ where $t=\sin ^{ -1 }{ \left( \cfrac { y }{ \sqrt { { x }^{ 2 }+{ y }^{ 2 } } } \right) } $ then $\cfrac { dy }{ dx } $ is equal to
Value of c is :-
$\dfrac{d}{dx}(c\ ^{f(x)}) = f' (x)e^{f(x)}$
The condition that the line $\dfrac{x}{a}+\dfrac{y}{b}=1$ is tangent to the curve $x^{2/3}+y^{2/3}=1$ is
If line $PQ$, whose equation is $y = 2x + k,$ is a normal to the parabola whose vertex is $(-2,3)$ and the axis parallel to the $x$-axis with latus rectum equal to $2$, then the possible value of k is
If $y = \dfrac { 1 } { 1 + x ^ { n - m } + x ^ { p - m } } + \dfrac { 1 } { 1 + x ^ { m - n } + x ^ { p - n } } + \dfrac { 1 } { 1 + x ^ { m - p } + x ^ { n - p } }$ then $\dfrac { d y } { d x }$ at $x = e ^ { m ^ { n p } }$ is equal to