Tag: physics

Questions Related to physics

The value of $7 log _a \displaystyle \frac{16}{15} + 5 log _a \frac{25}{24} + 3 log _a \frac{81}{80}$ is

  1. $log _{a3}$

  2. $log _{a1}$

  3. $log _{a2}$

  4. $log _{a5}$


Correct Option: C
Explanation:

We have,

$7log _a\dfrac{16}{15}+5log _a\dfrac{25}{24}+3log _a\dfrac{81}{80}$
$\Rightarrow log _a(\dfrac{16}{15})^7+log _a(\dfrac{25}{24})^5+log _a(\dfrac{81}{80})^3$
$\Rightarrow log _a(\dfrac{16}{15})^7\times (\dfrac{25}{24})^5\times (\dfrac{81}{80})^3$
$\Rightarrow log _a\dfrac{16^3\times 16^4}{5^7\times 3^7}\times \dfrac{5^5\times 5^5}{8^5\times 3^5}\times \dfrac{3^6\times 3^6}{16^3\times 5^3}$
$\Rightarrow log _a\dfrac{16^4}{1\times 1}\times \dfrac{1}{8^5\times 1}\times \dfrac{1}{1}$
$\Rightarrow log _a\dfrac{2^4\times 8^4}{8^5}$
$\Rightarrow log _a\dfrac{16}{8}$
$\Rightarrow log _a2$

Hence, this is the answer.

If $log _{10} x - log _{10} \sqrt x = \displaystyle \frac{2}{log _{10} x}$, then value of x is

  1. $\displaystyle \frac{1}{100}$ or $100$

  2. $\pm$ 2

  3. 10 or $\displaystyle \frac{1}{10}$

  4. 100


Correct Option: A
Explanation:

Consider the given equation.

$log _{10}x-log _{10}\sqrt x=\dfrac{2}{log _{10}x}$
$log _{10}\dfrac{x}{\sqrt x}=\dfrac{2}{log _{10}x}$
$log _{10}\sqrt x=\dfrac{2}{log _{10}x}$
$\dfrac{1}{2}log _{10}\ x=\dfrac{2}{log _{10}x}$
$\dfrac{1}{2}(log _{10}\ x)^2=2$
$(log _{10}\ x)^2=4$
$log _{10}\ x=\pm 2$
$x=10^{\pm2}$
$x=100\ or\ \dfrac{1}{100}$

Hence, this is the answer.

If $\displaystyle \frac{log _2 (9 - 2^x)}{3 - x} = 1$, then value of x is

  1. x = 4

  2. x = + 1 or -1

  3. x = $\pm$ 2

  4. x = 0


Correct Option: D
Explanation:

We have,

$\dfrac{log _2(9-2^x)}{3-x}=1$
$log _2(9-2^x)=3-x$
$9-2^x=2^{3-x}$                $ .......... (1)$

From option $(D)$
$9-2^0=2^{3-0}$
$9-1=2^3$
$8=8$

Hence, $x=0$ is the root of this equation.

Hence, only option $D$ is correct.

The value of $\log _{ \frac{1}{2} }{ 4 } $ is

  1. $-2$

  2. $0$

  3. $\dfrac{1}{2}$

  4. $2$


Correct Option: A
Explanation:

Let $\log _{\frac{1}{2}}4 = x $

Then, $(\dfrac{1}{2})^x = 4 $

$Or, (\dfrac{1}{2})^x =2^2$

$Or, 2^{-x} = 2^2$

$x= -2$

The equation  ${ \left( \log _{ 10 }{ x+2 }  \right)  }^{ 3 }+{ \left( \log _{ 10 }{ x-1 }  \right)  }^{ 3 }={ \left( 2\log _{ 10 }{ x+1 }  \right)  }^{ 3 }$ has

  1. no natural solution

  2. two rational solutions

  3. no prime solution

  4. one irrational solution


Correct Option: B,C,D
Explanation:

Let $ \log _{ 10 }{ x+2 } =a$ and $ \log _{ 10 }{ x-1 } =b$
$\therefore a+b=2\log _{ 10 }{ x+1 } $ (from the question)
Thus, the given equation(in the question) reduces to ${a}^{3}+{b}^{3}={(a+b)}^{3}$
$\Rightarrow 3ab(a+b)=0$
$\Rightarrow a=0$ or $b=0$ or $a+b=0$
$\Rightarrow \log _{ 10 }{ x+2 }=0$  or $\log _{ 10 }{ x-1 }=0$ or $2\log _{ 10 }{ x } +1=0$
$\Rightarrow x={10}^{-2}$  or  $x=10$ or  $x={ 10 }^{ -\frac { 1 }{ 2 }  }$
Hence  $x=\left{ \dfrac { 1 }{ 100 },10 ,\dfrac { 1 }{ \sqrt { 10 }  }  \right} $

Magnification produced by a convex mirror is $\frac { 1 }{ 3 }$, then distance of the object from mirror is

  1. $\frac { f }{ 3 }$

  2. $\frac { 2f }{ 3 }$

  3. $1f$

  4. $2f$


Correct Option: D

A convex lens of focal length 30 cm forms an image of height 2 cm for an object situated at infinity. If a concave lens of focal length 20 cm is placed coaxially at a distance of 26 cm in front of convex lens. then size of final image would be:

  1. $1.25cm$

  2. $2.5 cm$

  3. $2 cm$

  4. $0.75cm$


Correct Option: B

The object distance $u$ for a concave mirror:

  1. must be positive

  2. must be negative

  3. must not be negative

  4. may be negative


Correct Option: D
Explanation:

Positive and negative sign depend on the assumption of sign conversion.
either side we can consider positive or negative.
Hence Option D.

The linear magnification for a mirror is the ratio of the size of the image to the size of the object, and is denoted by m. Then m is equal to (symbols have their usual meanings).

  1. $\displaystyle \frac { uf }{ u-f } $

  2. $\displaystyle \frac { uf }{ u+f } $

  3. $\displaystyle \frac { f }{ u-f } $

  4. None of these


Correct Option: C
Explanation:

we now,$\dfrac{1}{f}=\dfrac{1}{v}+\dfrac{1}{u}$
multiplying by u in above eq.
$\dfrac{u}{f}=\dfrac{u}{v}+\dfrac{u}{u}$
$\dfrac{u}{f}=\dfrac{u}{v}+1$
$\dfrac{u}{f}-1=\dfrac{u}{v}$
$\dfrac{u}{v}=\dfrac{u-f}{f}$
$\dfrac{v}{u}=\dfrac{f}{u-f}  ,  As, m=\dfrac{v}{u}$
$m=\dfrac{f}{u-f}$
hence,option C is correct.

The sum of the reciprocals of object distance and image distance is equal to the __________ of a mirror.

  1. focal length

  2. reciprocal of the focal length

  3. radius of curvature

  4. reciprocal of the radius of curvature


Correct Option: B
Explanation:

The sum of the reciprocals of object distance and image distance is equal to the reciprocal of the focal length of a mirror.