Tag: physics

Questions Related to physics

MKS system means

  1. Millimeter, kilometre, seconds

  2. Metre, kilogram, seconds

  3. Millisecond, kilolitre, seconds

  4. Milligram, kilogram, seconds


Correct Option: B
Explanation:

In MKS system,M stands for metre (length),K stands for kilogram(mass) and S stands for seconds(time).

Units of Planck's constant in CGS system are:

  1. Erg per second

  2. Second per erg

  3. Erg second

  4. Erg per second per second


Correct Option: C
Explanation:

Planck's constant, symbolized h, relates the energy in one quantum (photon) of electromagnetic radiation to the frequency of that radiation.  In the centimeter-gram-second (CGS) or small-unit metric system, it is equal to approximately $6.626176\times 10^{-27}\,$Erg Second.

If force (F), work (W) and velocity (V) are taken as fundamental quantities then the dimensional formula of time (T) is

  1. $\left[ { W }^{ 1 }{ F }^{ 1 }{ V }^{ 1 } \right] $

  2. $\left[ { W }^{ 1 }{ F }^{ 1 }{ V }^{ -1 } \right] $

  3. $\left[ { W }^{ -1 }{ F }^{ -1 }{ V }^{ -1 } \right] $

  4. $\left[ { W }^{ 1 }{ F }^{ -1 }{ V }^{ -1 } \right] $


Correct Option: D
Explanation:
We know,

$[W]=ML^2T^{-2}$

$[F]=MLT^{-2}$

$[V]=LT^{-1}$

Let,
$W^aF^bV^c=M^0L^0T$

$a+b=0$

$2a+b+c=0$, $a+c=0$

$-2a-2b-c=1$

$c=-1,a=1,b=-1$

Hence , $[T]=[WF^{-1}V^{-1}]$

Option $\textbf D$ is the correct answer

The ratio of SI unit to CGS unit of G is

  1. $10^{3}$

  2. $10^{2}$

  3. $10^{-2}$

  4. $10^{-3}$


Correct Option: A
Explanation:
SI unit of G is  $\dfrac{N m^2}{kg^2}$.
CGS unit of G is  $\dfrac{dyne \ cm^2}{gm^2}$
We know that  $1 \ N = 10^5 \ dyne$ and $1 \ m = 10^2 \ cm$ and $1 \ kg = 10^3 \ gm$
So ratio of SI unit to CGS unit   $ = \dfrac{\dfrac{N  \ m^2}{kg^2}}{\dfrac{dyne \ cm^2}{gm^2}} = \dfrac{\dfrac{10^5 \ dyne \ (10^2 \ cm)^2}{(10^3 \ gm)^2}}{\dfrac{dyne \ cm^2}{gm^2}} = 10^3$
Correct answer is option A.

Which of the following represents the magnitude of a temperature correctly?

  1. 10 k

  2. 10 Kelvins

  3. 10 Ks

  4. 10 K


Correct Option: D
Explanation:
Temperature is measured in Kelvin which is represented by $K$
Thus, $10 \ K$ is the correct representation of temperature.

1 Newton $=$

  1. $10^4 dyne$

  2. $10^5 dyne$

  3. $10^6dyne$

  4. $10^7 dyne$


Correct Option: B
Explanation:
S.I. unit of force is Newton and CGS unit of force is done.

We know $F=ma$
so, force can be expresses in S.I. Units as $Kg m s^{-2}$
and dyne can be expressed as $gcms^{-2}$
1 Newton= $kg ms^{-2}$ 
                 =$10^3 g*10^2 cms  s^{-2}$
                 =$10^5 g cm s^{-2}$
                 =$10^5 dyne$

A magnetic pole of pole strength 9.2 A m. is placed in a field of induction 50x10$^{-6}$ Tesla. The force experienced by the pole is :

  1. 46N

  2. 46$\times$10$^{-4}$N

  3. 4.6$\times$10$^{-4}$N

  4. 460N


Correct Option: C
Explanation:

$m=9.2Am$
$B=50\times 10^{-6}T$
$F=B\times m$
$F=9.2\times 50\times 10^{-6}$
    $=4.6\times 10^{-4}N$

Two equal poles repel each other with a force of 10$^{-3}$ N. When placed 2cm apart in air, the pole strength of each is (in amp-m).

  1. 4$\pi $

  2. 2

  3. 4

  4. 2$\pi $


Correct Option: B
Explanation:

$F=10^{-3}N$
$d=2cm$
$m _{1}=m _{2}=m$
$F=\dfrac{\mu _{0}m _{1}m _{2}}{4\pi d^{2}}$

$10^{-3} = \dfrac{10^{-7}\times m^{2}}{(2\times 10^{-2})^2}$
$m=2Am$

Force between two identical bar magnets whose centres are  $r meters $ apart is $4.8 N,$ when their axis are in the same line. If the separation is increased to $2r$ meters, the force between them is reduced to:

  1. 2.4 N

  2. 1.2 N

  3. 0.6 N

  4. 0.3 N


Correct Option: B
Explanation:

$F=\dfrac{\mu _{0}m _{1}m _{2}}{4\pi d^{2}}$
$F\propto \dfrac{1}{d^{2}}$
$Fd^{2}=Constant$
$F _{1}d _{1}^{2}=F _{2}d _{2}^{2}$
$4.8\times r^2=F _{2}(2r)^2$
$F _{2}=1.2  N$

The magnetic induction at a distance d from the magnetic pole of the unknown strength m is B. If an identical pole is now placed at a distance of 2d from the first pole, the force between the two poles is          

  1. mB

  2. $\frac{mB}{2}$

  3. $\frac{mB}{4}$

  4. 2mB


Correct Option: C
Explanation:
$B=\dfrac{\mu _{0}m}{4\pi d^{2}}$
$r=2d$
$F=\dfrac{\mu _{0}m _{1}m _{2}}{4\pi r^{2}}$
$F=\dfrac{\mu _{0}\times m\times m}{4\pi (d)^{2}}$
$F=\dfrac{\mu _{0}m^{2}}{4\pi \times 4d^{2}}$
$F=\dfrac{mB}{4}N$