Tag: physics

Questions Related to physics

A spherometer has 10 threads per cm and its circular scale has 50 divisions. The least count of the instrument is  

  1. $0.01 cm$

  2. $0.02 cm$

  3. $0.002 cm$

  4. $0.2 cm$


Correct Option: C
Explanation:

The least count of the spherometer, $LC=$pitch/ total number of circular divisions $=\dfrac{p}{n}$
Here, pitch $p=1/20=0.1\ cm$ and $n=50$
Thus, $LC=\dfrac{0.1}{50}=0.002\ cm$

If a star is $5.2\times 10^{16}\ m$ away. What is the parallax angle in degrees?

  1. $1.67 \times 10^{-4}$ degrees

  2. $1.67 \times 10^{-5}$ degrees

  3. $0.67 \times 10^{-4}$ degrees

  4. $2.3 \times 10^{-4}$ degrees


Correct Option: A
Explanation:

Given :    $1$ AU $ = 1.5\times 10^11$ m                $d = 5.2\times 10^{15}$ m

Parallax angle:     $\alpha = \dfrac{1 AU}{d} =\dfrac{1.5\times 10^{11}}{5.2\times 10^{16}} = 0.288\times 10^{-5}$  radians
$\implies$   $\alpha = \dfrac{180}{\pi} \times 0.288\times 10^{-5} = 1.67\times 10^{-4}$  degrees

A star is $1.45\ parsec$ light years away. How much parallax would this star show when viewed from two locations of the earth six months apart in its orbit around the sun?

  1. $2\ Parsec$

  2. $0.725\ Parsec$

  3. $1.45\ Parsec$

  4. $2.9\ Parsec$


Correct Option: A
Explanation:

One light year $=$ speed of light $\times$ one year

or $1 ly=3\times 10^8\times (24\times 3600)=94608\times 10^{11} m$
So, $4.29 ly=4.29\times (94608\times 10^{11})=4.058\times 10^{16} m$
As $1 $ parsec $=3.08\times 10^{16} m$
(Parsec is a unit of length used to measure large distances to objects outside our Solar System)
Thus, $4.29 ly=\dfrac{4.058\times 10^{16}}{3.08\times 10^{16}}=1.32$ parsec
Now angular displacement , $\theta=\dfrac{d}{D}$
where $d=$ diameter of earth's orbit $= 3\times 10^{11} m$ and 
$D=$ distance of star from the earth $=4.058\times 10^{16} m$
So, $\theta=\dfrac{3\times 10^{11}}{4.058\times 10^{16}}=7.39\times 10^{-6}$ rad
As $1 sec=4.85\times 10^{-6} rad$ so, $7.39\times 10^{-6} rad=\dfrac{7.39\times 10^{-6}}{4.85\times 10^{-6}}=1.52 sec$

The angles of minimum deviations are 53$^{\circ}$ and 51$^{\circ}$ for blue and red colors respectively produced in an equilateral glass prism. The dispersive power is :

  1. $\dfrac{2}{51}$

  2. $\dfrac{1}{26}$

  3. $\dfrac{1}{52}$

  4. $\dfrac{1}{51}$


Correct Option: B
Explanation:

As $\delta _{Y}=\dfrac{\delta _{B}+\delta _{R}}{2}$


So $\delta _{Y}=\dfrac{53^{\circ }+51^{\circ }}{2}$ =52$^{\circ }$

$\therefore dispersive\ power\ =\dfrac{\delta _{B}-\delta _{R}}{\delta _{Y}}$

                                    $=\dfrac{53-51}{52}$

                                    $=\dfrac{2}{52}$

                                    $=\dfrac{1}{26}$

If the refractive indices of crown glass for red, yellow and violet colours are respectively ${ \mu  } _{ r },{ \mu  } _{ y },{ \mu  } _{ v }$, then the dispersive power of this glass would be

  1. $\cfrac { { \mu } _{ v }-{ \mu } _{ r } }{ { \mu } _{ y }-1 } $

  2. $\cfrac { { \mu } _{ v }-{ \mu } _{ y } }{ { \mu } _{ r }-1 } $

  3. $\cfrac { { \mu } _{ v }-{ \mu } _{ y } }{ { \mu } _{ y }-{ \mu } _{ r } } $

  4. $\cfrac { { \mu } _{ v }-{ \mu } _{ r } }{ { \mu } _{ y } } -1$


Correct Option: A
Explanation:

Dispersive power of a glass is given by ratio of difference of reflective index of two extreme wavelength to the difference of intermediate wavelength to unity i.e.


$ { Dispersive\quad Power\quad =\quad \dfrac { { \mu  } _{ v }-{ \mu  } _{ r } }{ { \mu  } _{ y }-1 }  } $

The dispersion of a medium for wavelength $\lambda$ is D. Then the dispersion for the wavelength $2\lambda$ will be:

  1. $(D/8)$

  2. $(D/4)$

  3. $(D/2)$

  4. D


Correct Option: A
Explanation:

As we know, Cauchy's Dispersion formula is :
$ \mu $= $A + \dfrac{B}{ \lambda^{^{2}}} $
And dispersion
D= - $ \dfrac {d\mu}{d\lambda}$
Therefore, from the above 2 equations:
D = $ -(-2\lambda ^{3})B $= $ \dfrac {2B}{\lambda^{3}}$
This implies that
D $ \alpha \dfrac{1}{\lambda^{3}}$
Hence,
$ \dfrac {{D}'}{D}$ = $( \dfrac{\lambda}{{\lambda}' })^{3}$
As $ {\lambda}' = 2\lambda$
Therefore,
$ {D}' =D/8$

In a prism, the refractive indices of different colours are
$\mu _{V} =$ 1.6;
$\mu _{R} =$ 1.52;
$\mu _{Y} =$ 1.56.
The dispersive power of the prism is :

  1. $\dfrac{1}{56}$

  2. $\dfrac{1}{8}$

  3. $\dfrac{1}{7}$

  4. Infinite


Correct Option: C
Explanation:

Dispersive power of prism= $w=\dfrac{\mu _{V}-\mu _{R}}{\mu _{Y}-1}$


$w=\dfrac{1.6-1.52}{1.56-1}$

$w=\dfrac{1}{7}$

A flint glass prism is of refracting angle 5$^{\circ}$. Its refractive index for C line is 1.790 and for F line is 1.805. The angular dispersion of C and F lines is:

  1. 0.075$^{\circ}$

  2. 0.085$^{\circ}$

  3. 0.095$^{\circ}$

  4. 0.065$^{\circ}$


Correct Option: A
Explanation:

Deviation for C line $= \text{(Refractive index for C line -1) x Refracting angle}$

                                 $= (1.79-1) \times 5$
                                 $=3.95^o$

Deviation for F line $= \text{(Refractive index for F line -1) x Refracting angle}$

                                 $= (1.805-1) \times 5$      
                                 $= 4.025^o$

So the angular dispersion of C and F line is the deviation difference between F and C line.
Angular dispersion $= 4.025 -3.95 = 0.075^o$

Dispersive power of the material of a prism is 0.0221. If the deviation produced by it for yellow colour is 38$^{\circ}$, then the angular dispersion between red and violet colours is :

  1. 0.65$^{\circ}$

  2. 0.84$^{\circ}$

  3. 0.48$^{\circ}$

  4. 1.26$^{\circ}$


Correct Option: B
Explanation:

As Dispersive power $ = \dfrac{Angular  \  dispersion}{mean  \ deviation}$


We take the deviation for yellow color as the mean deviation

$\Longrightarrow$  $\omega=\dfrac{\delta _{V}-\delta _{R}}{\delta _{Y}}$


$\Longrightarrow$  $0.0221=\dfrac{\delta _{V}-\delta _{R}}{38^{\circ }}$

$\Longrightarrow$  $\delta _{\nu}-\delta _{R}=0.84^{\circ }$

The dispersive power of a medium is

  1. The greatest for red light

  2. the least for red light

  3. the least for yellow light

  4. the ate for at colours


Correct Option: B
Explanation:

We know $ P \propto\frac {1}{f}$ focal length is maximum for red light.