Tag: physics

Questions Related to physics

In a measurement, the uncertainty of length $L$ is $\pm a$ and the uncertainty of width $W$ is $\pm b$. Assuming a and b very small, find the the uncertainty in measurement of area. 

  1. $a/L+b/W$

  2. $aL+bW$

  3. $aW+bL$

  4. $a^2/W+b^2/L$


Correct Option: C
Explanation:

Here given, $\Delta L=a$ and $\Delta W=b$
Area, $A=LW$
Take ln and then differentiate, $\dfrac{\Delta A}{A}=\dfrac{\Delta L}{L}+\dfrac{\Delta W}{W}=a/L+b/W$
So,$\Delta A=(a/L+b/W)(LW)=aW+bL$

In an experiment, the value of refractive index of a plastic has been found 1.33,1.30, 1.34 and 1.29 in successive measurements. Find the mean absolute error for refractive index.  

  1. $0.12$

  2. $0.02$

  3. $0.10$

  4. $0.01$


Correct Option: B
Explanation:

Here the mean value, $\bar{n}=\dfrac{1.33+1.30+1.34+1.29}{4}=1.31$
The absolute error in each measurements are, 
$\Delta n _1=\bar{n}-n _1=1.31-1.33=-0.02$;
$\Delta n _2=\bar{n}-n _2=1.31-1.30=0.01$;
$\Delta n _3=\bar{n}-n _3=1.31-1.34=-0.03$;
$\Delta n _4=\bar{n}-n _4=1.31-1.29=0.02$;
The mean absolute error, $\Delta \bar{n}=\dfrac{|\Delta n _1|+|\Delta n _2|+|\Delta n _3|+|\Delta n _4|}{4}=\dfrac{0.02+0.01+0.03+0.02}{4}=0.02$

The capacitance of two capacitors are $C _1=(5 \pm 0.1)\mu F$ and $C _2=(10 \pm 0.1)\mu F$, If they are connected in series then the percentage error is 

  1. $3.33 $%

  2. $4.03 $%

  3. $3.0 $%

  4. $4.33 $%


Correct Option: D
Explanation:

When two capacitors are in series, the equivalent capacitance is $C=\dfrac{C _1C _2}{C _1+C _2}$
Thus, $\dfrac{\Delta C}{C}=\dfrac{\Delta C _1}{C _1}+\dfrac{\Delta C _2}{C _2}+\dfrac{\Delta C _1+\Delta C _2}{C _1+C _2}$

The % error, $\dfrac{\Delta C}{C}\times 100=\left(\dfrac{\Delta C _1}{C _1}+\dfrac{\Delta C _2}{C _2}+\dfrac{\Delta C _1+\Delta C _2}{C _1+C _2}\right)\times 100$
                                         $=(\dfrac{0.1}{5}+ \dfrac{0.1}{10}+\dfrac{0.1+0.1}{5+10})\times 100=4.33$%

In an experiment, mass of an object is measured by applying a known force on it, and then measuring its acceleration. If, in the experiment, the measured values of applied force and the measured acceleration are $F=10.0\pm 0.2N$ and $a=1.00\pm 0.01m/{s}^{2}$, respectively, the mass of the object is

  1. $10.0Kg$

  2. $10.0\pm 0.1Kg$

  3. $10.0\pm 0.3Kg$

  4. $10.0\pm 0.4Kg$


Correct Option: C
Explanation:

$F=Ma$
$M=\cfrac { f }{ a } $
$\cfrac { \Delta M\times 100 }{ M } =\cfrac { \Delta f }{ f } \times 100+\cfrac { \Delta a }{ a } \times 100$
$=\cfrac { 0.2 }{ 10 } +\cfrac { 0.01 }{ 1 } $
$\Delta M=0.03\times 10$
$\therefore$ $10.0\pm 0.3Kg$

A physical quantity $X$ is represented by $X = [M^{\eta}L^{-\theta} T^{-\phi}]$. The maximum percentage errors in the measurement of $M, L$ and $T$, respectively are $\alpha$%, $\beta$% and $\gamma$%. The maximum percentage error in the measurement of $X$ will be

  1. $(\eta \alpha - \theta \beta - \phi \gamma)$%

  2. $(\theta \beta + \phi \gamma - \eta \alpha)$%

  3. $\left (\dfrac {\alpha}{\eta} - \dfrac {\beta}{\theta} - \dfrac {\gamma}{\phi}\right )$%

  4. $(\eta \alpha + \theta \beta + \phi \gamma)$%


Correct Option: D
Explanation:

Given, $X=M^{\eta}L^{-\theta}T^{-\phi}$

Differentiating, $\Delta X=(\eta M^{\eta-1}\Delta M) L^{-\theta}T^{-\phi}-(\theta L^{-\theta-1}\Delta L)M^{\eta}T^{-\phi}-(\phi T^{-\phi-1}\Delta T)M^{\eta}L^{-\phi}$
So, $\dfrac{\Delta X}{X}=\eta\dfrac{\Delta M}{M}-\theta\dfrac{\Delta L}{L}-\phi\dfrac{\Delta T}{T}$ 

As the error should be both positive and negative , so we can take mod
The % error in X $=|\dfrac{\Delta X}{X}|\times 100$
                            $=\left[\eta\dfrac{\Delta M}{M}+\theta\dfrac{\Delta L}{L}+\phi\dfrac{\Delta T}{T}\right]\times 100$   
                            $=(\eta\alpha+\theta\beta+\phi\gamma) $ %                         

The energy of a system as a function of time t is given as $E(t) = A^2 exp(- \alpha t)$, where $\alpha = 0.2 s^{-1}$. The measurement of A has an error of 1.25%. If the error in the measurement of time is 1.50%, the percentage error in the value of $E(t)$ at t = 5 s is:

  1. 2%

  2. 4%

  3. 3%

  4. 5%


Correct Option: B
Explanation:

$E(t) = A^2 e^{-\alpha t}$
Taking natural logarithm on both sides,
$ln(E) = 2ln(A) + (- \alpha t)$
Differentiating both sides
$\displaystyle \frac{dE}{E} = 2\frac{dA}{A} + (\alpha dt)$
Errors always add up for maximum error.
$\displaystyle \therefore \frac{dE}{E} = 2\frac{dA}{A} + \alpha \left( \frac{dt}{t} \right) \times t$
Here, $\displaystyle \frac{dA}{A} = 1.25$ %, $\displaystyle \frac{dt}{t} = 1.5$%, $t = 5s$, $\displaystyle \alpha = 0.2 s^{-1}$
$\therefore \displaystyle \frac{dE}{E} = (2 \times 1.25$%$\displaystyle ) + (0.2) \times (1.5$%$) \times 5 = 4$%

The relative error in the determination of the surface area of a sphere is $\alpha$. Then the relative error in the determination of its volume is :

  1. $\cfrac { 2 }{ 3 } \alpha $

  2. $\cfrac { 5 }{ 2 } \alpha $

  3. $\cfrac { 3 }{ 2 } \alpha $

  4. $\alpha $


Correct Option: C
Explanation:

S=$4{\pi}R^2$

$\ln { S }$= $\ln ({ 4 {\pi} }) + \ln( { R^2 })$
$\ln { S } = 2\ln { R }$
$\dfrac{\Delta S}{S} = 2 \dfrac{\Delta R}{R} = \alpha$
$\dfrac{\Delta R}{R} = \dfrac {\alpha}{2}$ ------------(1)

V= $\dfrac {4}{3} \pi R^3$
$\ln {V}$ = $\ln ({\dfrac {4}{3} \pi}) + \ln {R^3}$
$\ln {V} = 3 \ln {R}$

$\dfrac{\Delta V}{V} = 3 \dfrac{\Delta R}{R}$

$\dfrac {\Delta V}{V} =3 (\dfrac {\alpha}{2})$

The length  and width of a rectangular room are measured to be $3.95 \pm  0.05 m$ and $3.05 \pm  0.05m$, respectively. The area of the floor is 

  1. $12.05\pm 0.01m^2$

  2. $12.05\pm 0.005m^2$

  3. $12.05\pm 0.34 m^2$

  4. $12.05\pm 0.40m^2$


Correct Option: C
Explanation:

Length of the room  $l = 3.95 \pm 0.05 \ m$
Width of the room  $b = 3.05\pm 0.05 \ m$
Absolute area of the room  $A = lb = 3.95\times 3.05 = 12.05 \ m^2$
Error in area of room   $\dfrac{\Delta A}{A} = \dfrac{\Delta l}{l}+\dfrac{\Delta b}{b}$
$\therefore$   $\dfrac{\Delta A}{12.05} = \dfrac{0.05}{3.95}+\dfrac{0.05}{3.05}$
$\implies \ \Delta A = 0.34 \ m^2$
Thus area of the room is written as  $12.05\pm 0.34 \ m^2$ 

If the error in measuring the radius of a sphere is 2%, then the error in the measurement of volume is:

  1. 8%

  2. 6%

  3. 2%

  4. 9%.


Correct Option: B
Explanation:
Percentage error in radius is given as $2$% i.e.  $\dfrac{\Delta r}{r}\times 100 = 2$ %
Volume of sphere   $V = \dfrac{4\pi}{3}r^3$
Percentage error in volume   $\dfrac{\Delta V}{V}\times 100 = 3\times \dfrac{\Delta r}{r}\times 100 = 3\times 2 = 6$ %

Two resistors of resistances $R _1$ = (100 $\pm$ 3) $\Omega$ and $R _2$ = (200 $\pm$ 4) $\Omega$ are connected in parallel. The equivalent resistance of the parallel combination is:

  1. (66.7 $\pm$ 1.8) $\Omega$

  2. (66.7 $\pm$ 4.0) $\Omega$

  3. (66.7 $\pm$ 3.0) $\Omega$

  4. (66.7 $\pm$ 7.0) $\Omega$


Correct Option: A
Explanation:

Here, $R _1 (100 \pm 3) \Omega; R _2 = (200 \pm 4) \Omega$ The equivalent resistance in parallel combination is

$\displaystyle \frac{1}{R _1} = \frac{1}{R _1} + \frac{1}{R _2}, \frac{1}{R _p} = \frac{1}{100} + \frac{1}{200} = \frac{3}{200}, R _p = \frac{200}{3} = 66.7 \Omega$

The error in equivalent resistance is given by
$\displaystyle \frac {\Delta R _p}{R _p^2} = \frac {\Delta R _1}{R _1^2} + \frac {\Delta R _2}{R _2^2}; \Delta R _p = \Delta R _1 (\frac{R _p}{R _1})^2 + \Delta R _2 (\frac {R _p}{R _2})^2 = 3 (\frac {66.7}{100})^2 + 4 (\frac {66.7}{200})^2 = 1.8 \Omega $ 
Hence, the equivalent resistance along with error in parallel combination is (66.7 $\pm$ 1.8)$\Omega$.