Tag: complete the a.p series with given information

Questions Related to complete the a.p series with given information

Suppose in $\Delta ABC$, ex-radii $r _1,r _2,r _3$ are H.P. then the sides $a,b,c$ 

  1. will be in A.P.

  2. will be in H.P.

  3. will be in G.P.

  4. $a+2b=c$


Correct Option: A

If the ratio of sum of n terms of two sequences is (3n+8):(7n+15), then the ratio of their $ 12^{th}$ term is ---------.

  1. 16 : 7

  2. 7 : 16

  3. 74 : 169

  4. None of the above


Correct Option: A
Explanation:

Let $a,A$ be first term and $d,D$ be common difference and $S _n,s _n$ be there respective sum.

$\cfrac{s _n}{S _n}=\cfrac{(n/2)[2a+(n-1)d]}{(N/2)[2A+(N-1)D]}=\cfrac{3n+8}{7n+15}$
Put $n=23$, we get
$\cfrac{a+11d}{A+11D}=\cfrac{77}{176}=\cfrac{t _{12}}{T _{12}}$

Let ${a _1},{a _2},{a _3}.....$ and ${b _1},{b _2},{b _3}......$ be AP such that ${a _1}=25,{b _1}=75$ and ${a _{100}} + {b _{100}} = 100$. Then,

  1. The difference between successive terms in progression $a$ is opposite the difference in progression $b$

  2. ${a _n} + {b _n} = 100$ for any n

  3. $({a _1} + {b _1}),({a _2} + {b _2}),({a _3} + {b _3}),....$ are in AP

  4. $\sum\limits _{r = 1}^{100} {({a _r} + {b _r})} = 10000$


Correct Option: C

If the roots of palynomial $P ( x ) = x ^ { 3 } - 3 x ^ { 2 } + k x + 4 $ are in $A P ,$ then $\left| k \right| $. Has the value equal to

  1. 0

  2. 1

  3. 2

  4. 3


Correct Option: C
Explanation:

Given roots of the polynomial are in AP

let the roots of the polynomial be $a-d,a,a+d$
$\quad a-d+a+a+d=-\frac { -3 }{ 1 } \ \Rightarrow 3a=3\ \Rightarrow a=1$
so, $a=1$ is one of the roots of the equation
$\quad p\left( 1 \right) ={ 1 }^{ 3 }-3\times { 1 }^{ 2 }+k+4=0\ \Rightarrow k+2=0\ \Rightarrow k=-2$
$\left| k \right| =2$

If the non-zero terms $x , y, z$ are in $AP $ and $\tan ^ { -1 } x, \tan ^ { - 1 } y, \tan ^ { - 1 } x$ are also $AP$ then

  1. $x = y = z$

  2. $n ^ { 2 } y = z$

  3. $z ^ { 2 } = x y$

  4. $y ^ { 2 } = \frac { 1 } { x 2 }$


Correct Option: A
Explanation:

Given $x,yz$ are in $AP$

So, $y=x=2-y$
$2y=x+2 \quad -(1)$
Similarly,
$\tan ^{ -1 }{ x } ,\tan ^{ -1 }{ y } $ and $\tan ^{ -1 }{ z } $ are also in $AP$.
So, $2\tan ^{ -1 }{ y } =\tan ^{ -1 }{ x } +\tan ^{ -1 }{ z } $
$\Rightarrow \tan ^{ -1 }{ (\cfrac { 2y }{ 1-{ y }^{ 2 } } ) } =\tan ^{ -1 }{ (x+\cfrac { z }{ 1-xz } ) } \ \Rightarrow \cfrac { 2y }{ 1-{ y }^{ 2 } } =x+\cfrac { z }{ 1-xz } \ \Rightarrow x+\cfrac { z }{ 1-{ y }^{ 2 } } =x+\cfrac { z }{ 1-xz } \ \Rightarrow \cfrac { 1 }{ 1-{ y }^{ 2 } } =\cfrac { 1 }{ 1-xz } \ \Rightarrow 1-xz=1-{ y }^{ 2 }\ \Rightarrow 1-xz=1-{ { \cfrac { x+z }{ 2 } }  }^{ 2 }\ \Rightarrow { x }^{ 2 }+{ z }^{ 2 }+2xz=4xz\ \Rightarrow { x }^{ 2 }+{ z }^{ 2 }+2xz-4xz=0\ \Rightarrow { x }^{ 2 }+{ z }^{ 2 }-2xz=0\ \Rightarrow { (x-z) }^{ 2 }=0$
$\Rightarrow x=z$ put in $(1)$
$\Rightarrow 2y=x+2\ \Rightarrow 2y=2x\ \Rightarrow y=x\ x=y=z$

If roots of the equation $(a-b)x^{2}+(c-a)x+(b-c)=0, a \neq b \neq c$ are equal, then $a,b,c$ are in 

  1. $A.P$

  2. $H.P$

  3. $G.P$

  4. $None\ of\ these$


Correct Option: D
Explanation:

We have,

Given equation is

$\left( a-b \right){{x}^{2}}+\left( c-a \right)x+\left( b-c \right)=0$

On comparing that,

$A{{x}^{2}}+Bx+C=0$

Now,

$ A=\left( a-b \right) $

$ B=\left( c-a \right) $

$ C=\left( b-c \right) $

Roots are equal

Then,

$ D=0 $

$ {{B}^{2}}-4AC=0 $

$ \Rightarrow {{\left( c-a \right)}^{2}}-4\left( a-b \right)\left( b-c \right)=0 $

$ \Rightarrow {{c}^{2}}+{{a}^{2}}-2ac=4\left( ab-ac-{{b}^{2}}+bc \right) $

$ \Rightarrow {{c}^{2}}+{{a}^{2}}-2ac=4ab-4ac-4{{b}^{2}}+4bc $

$ \Rightarrow {{c}^{2}}+{{a}^{2}}-2ac+4ac=4ab-4{{b}^{2}}+4bc $

$ \Rightarrow {{\left( c+a \right)}^{2}}=4b\left( a-b+c \right) $

Hence, this is the answer

If a, b, c are in AP then $a+\frac{1}{bc}$, $b+\frac{1}{ca}$, $c+\frac{1}{ab}$ are in

  1. AP

  2. GP

  3. HP

  4. none of these


Correct Option: A
Explanation:

$a,b,c$ are in AP
$\Rightarrow (abc+1)a, (abc+1)b,(abc+1)c $ are in AP
$\Rightarrow  \dfrac{(abc+1)a}{abc},\dfrac{(abc+1)b}{abc},\dfrac{(abc+1)c}{abc}$ are in AP
$\Rightarrow a+\dfrac{1}{bc},b+\dfrac{1}{ac},c+\dfrac{1}{ab} $ are in AP
$\therefore$ Ans. is option A.

Let $a _1, a _2,....a _{10}$ be in AP, and $h _1, h _2,...., h _{10}$ be in HP. If $a _1=h _1=2$ and $a _{10}=h _{10}=3$, then $a _4h _7$ is?

  1. $2$

  2. $3$

  3. $5$

  4. $6$


Correct Option: D
Explanation:

${ a } _{ 10 }={ a } _{ 1 }+9{ d } _{ 1 }\qquad \Longrightarrow { d } _{ 1 }=\cfrac { 3-2 }{ 9 } =\cfrac { 1 }{ 9 } $

Now, ${ a } _{ 4 }={ a } _{ 1 }+3{ d } _{ 1 }=2+3\times \left( \cfrac { 1 }{ 9 }  \right) =\cfrac { 7 }{ 3 } \ \therefore \left( \cfrac { 1 }{ { h } _{ 10 } }  \right) =\left( \cfrac { 1 }{ { h } _{ 1 } }  \right) +9{ d } _{ 2 }\ \Longrightarrow \left( \cfrac { 1 }{ 3 }  \right) =\left( \cfrac { 1 }{ 2 }  \right) +9{ d } _{ 2 }\qquad \Longrightarrow { d } _{ 2 }=\left( \cfrac { -1 }{ 54 }  \right) $
Now, $\left( \cfrac { 1 }{ { h } _{ 7 } }  \right) =\left( \cfrac { 1 }{ { h } _{ 1 } }  \right) +6{ d } _{ 2 }=\cfrac { 1 }{ 2 } +6\left( \cfrac { -1 }{ 54 }  \right) \ \left( \cfrac { 1 }{ { h } _{ 7 } }  \right) =\cfrac { 7 }{ 18 } $
So, $a _4h _7=\cfrac{7}{3}\times \cfrac{18}{7}=6$

Hence, this is the answer.

Which term of the sequence $72, 70, 68, 66, ...$ is $40$ ?

  1. 12

  2. 15

  3. 17

  4. 19


Correct Option: C
Explanation:

The given sequence is an A.P. with first term $a=72$ and common difference $d=-2$. Let its nth term be 40.

$a _n=40$
$a+(n-1)d=40$
$72+(n-1)(-2)=40$
$72-2n+2=40$
$2n=34$
$n=17$
Hence, 17th term of the sequence is 40.

If $1,\,{\log _y}x,\,{\log _z}y,\, - \,15{\log _{x}z}$ are in $A.P.$ , then  

  1. ${z^3} = x$

  2. $x = {y^{ - 1}}$

  3. ${z^{ - 3}} = y$

  4. $x = {y^{ - 1}} = {z^3}$

  5. All the above


Correct Option: E
Explanation:

Let $d$ be the common difference of the $A.P.$

Then,
$\log _yx=1+d$
$\Rightarrow$  $x=y^{1+d}$                     ----- ( 1 )

$\log _zy=1+2d$
$\Rightarrow$  $y=z^{1+2d}$                   ------ ( 2 )

$-15\log _xz=1+3d$
$\Rightarrow$  $z=x^{\frac{-(1+3d)}{15}}$             ------ ( 3 )

$x=y^{1+d}=z^{(1+2d)(1+d)}=x^{\tfrac{-(1+d)(1+2d)(1+3d)}{15}}$

$\Rightarrow$  $(1+d)(1+2d)(1+3d)=-15$

$\Rightarrow$  $6d^3+11d^2+6d+16=0$

$\Rightarrow$  $(d+2)(6d^2-d+8)=0$

$\Rightarrow$  $d=-2$

Substituting value of $d$ we get,

$\Rightarrow$  $x=y^{-1}=z^3=x^{\tfrac{1}{3}}$ or

$\Rightarrow$  $x=y^{-1}=z^3,\,y=z^{-3}$