Tag: reducing simple equations to simpler form
Questions Related to reducing simple equations to simpler form
Solve for $x$ : $\displaystyle \sqrt{\frac{x\, -\,2}{x\, +\, 1}}\, =\, \frac{1}{2}$
Solve for $x$ : $\displaystyle \frac{4}{3\sqrt{x}}\, =\, \frac{1}{2}$
Solve:
$x\, +\, y\, =\, 7xy$
$2x\, -\, 3y\, =\, -xy$
Find the value of $a$, if $x = 0.5$ is a solution of equation $ax^{2}\, +\, (a\, -\, 1)\,
x\, +\, 3\, =\, a$.
The solution of the equation $\displaystyle \frac{2x+4}{3x-1}=\frac{4}{3}$ is
Find the value of $y$ in the equation :
$\displaystyle \frac{(2-3y)+4y}{9y-(8y+7)}=\frac{4}{5}$
A combination of locks requires 3 numbers to open. The second number is $\displaystyle 2d + 5$ greater than the first number. The third number is $\displaystyle 3d - 20$ less than the second number. The sum of the three numbers is $\displaystyle 10d + 9$. The first number is
If $\displaystyle \sqrt{\left ( x-1 \right )\left ( y+2 \right )}=7$, $x$ and $y$ being positive whole numbers, then the values of $x$ and $y$ are, respectively
If $\displaystyle 4=\sqrt{x+\sqrt{x+\sqrt{x+....,}}}$ then the value of x will be
$\displaystyle \sqrt{6+\sqrt{6+\sqrt{6+...}}}$ equals