Tag: relation between electric field and electric potential

Questions Related to relation between electric field and electric potential

Electric potential $'v'$ in space as a function of co-ordinates is given by, $v=\cfrac{1}{x}+\cfrac{1}{y}+\cfrac{1}{z}$. Then the electric field intensity at $(1,1,1)$ is given by :

  1. $-(\hat { i } +\hat { j } +\check { k } )$

  2. $\hat { i } +\hat { j } +\check { k } $

  3. zero

  4. $\cfrac{1}{\sqrt 3}(\hat { i } +\hat { j } +\check { k } )$


Correct Option: B
Explanation:
The electric field , $\vec{E}=-\vec{\nabla}V=-\left[\dfrac{\partial V}{\partial x}\hat i+\dfrac{\partial V}{\partial y}\hat j+\dfrac{\partial V}{\partial z}\hat k\right]=\dfrac{1}{x^2}\hat i+\dfrac{1}{y^2}\hat j+\dfrac{1}{z^2}\hat k$
at $(1,1,1) \Rightarrow \vec{E}=\hat i+\hat j+\hat k$

The electrostatic potential inside a charged spherical ball is given by $\phi=ar^2+b$, where r is the distance from the centre and a, b are constant. Then the charge density inside the ball is :

  1. $-6 a \epsilon _0r$

  2. $-24\pi a \epsilon _0r$

  3. $-6 a \epsilon _0$

  4. $-24 \pi a \epsilon _0$


Correct Option: C
Explanation:
Electric filed , $E=-\dfrac{d\phi}{dr}=-2ar$
By Gauss's law, $E.4\pi r^2=\dfrac{q _{in}}{\epsilon _0}$
$\Rightarrow q _{in}=(-2ar)4\pi r^2 \epsilon _0=-8\pi \epsilon _0 ar^3$
Now $\dfrac{dq _{in}}{dr}=-24\pi \epsilon _0 ar^2$ and $V=\dfrac{4}{3}\pi r^3,  \dfrac{dV}{dr}=4\pi r^2$
Charge density , $\rho=\dfrac{dq _{in}}{dV}=\dfrac{dq _{in}}{dr}\times \dfrac{dr}{dV}=(-24\pi \epsilon _0 ar^2)\times \dfrac{1}{4\pi r^2}=-6 \epsilon _0 a$

An electric field is given by $\vec E = (y \hat i +  \hat x) NC^{-1}$. Find the work done (in $J$) by the electric field in moving a $1\ C$ charge from $\vec r _A = (2 \hat i + 2 j) m $ to $\vec r _B = (4 \hat i + \hat j) m$

  1. $0\ J$

  2. $-2\ J$

  3. $2\ J$

  4. $4\ J$


Correct Option: A
Explanation:

Work done , $W=\int \vec{F}.\vec{dr}$

Here electrostatic force , $\vec{F}=q\vec{E}=q(y\hat i+x\hat j)$
$\vec{F}.\vec{dr}=q(y\hat i+x\hat j).(dx\hat i+dy\hat j)=q(ydx+xdy)=d(xy)$  as $q=1  C$

Now $W=\int _{2,2}^{4,1}d(xy)=[xy] _{2,2}^{4,1}=4\times 1-2\times 2=4-4=0$

If the electrostatic potential is given by $\phi =\phi _0(x^2+ y^2 + z^2)$ where $\phi _0$ is constant, then the charge density of the given potential would be :

  1. $0$

  2. $-6\phi _0\varepsilon _0$

  3. $-2\phi _0\varepsilon _0$

  4. $\dfrac{-6\phi _0}{\varepsilon _0}$


Correct Option: B
Explanation:

$ \overrightarrow{E} = -\triangledown \phi $
$ \overrightarrow{\triangledown}.\overrightarrow{E} = \rho/\epsilon _0 $
Now, $\phi = \phi _0 (x^2 + y^2 + z^2) \Rightarrow \overrightarrow{E} = -2\phi _0 ( \hat{i}+\hat{j}+\hat{k} ) \Rightarrow \rho = -6\phi _0 \epsilon _0 $

Electric field in a region is given as $\bar{E}=x\hat{i}+2y\hat{j}+3\hat{k}$. In this region point A(3,3,1) and point B (4,2,1) are there. The magnitude of work done by the electric field, if 2 coulomb charge is moved from A to B. All values are in SI units:

  1. 3

  2. 4

  3. 5

  4. 6


Correct Option: A
Explanation:

Given, $\vec{E}=x\hat{i}+2y\hat{j}+3\hat{k}$ and $ q=2 C$
Work done, $W=\int^B _Aq\vec{E}.\vec{dr}=q\int^B _A(x\hat{i}+2y\hat{j}+3\hat{k}).(dx\hat{i}+dy\hat{j}+dz\hat{k})$
or,$W=2\int^{(4,2,1)} _{(3,3,1)}xdx+2ydy+3dz=2[\frac{16-9}{2}+(4-9)+3(1-1)]=7-10=-3$
Magnitude of work done$=|W|=3$

Find the magnitude of the force on a charge of $12\mu C$ placed at point where the potential gradient has a magnitude of $6\times 10^{5}V\ m^{-1}$

  1. $5.20\ N$

  2. $7.20\ N$

  3. $6.20\ N$

  4. $8.20\ N$


Correct Option: B
Explanation:

Potential gradient is nothing but the rate of change of electric potential with position and it is equal to electric field at that point.


$\dfrac{dV}{dl}=E$=electric field

$\implies E=6\times 10^5Vm^{-1}$

Force on charge $=F=qE=12\times 10^{-6}\times 6\times 10^5$

$\implies F=7.2N$

Answer-(B)

The most appropriate relationship between electric field and electric potential is given by

  1. $E = - \nabla V _E$

  2. $V _E = - \nabla E$

  3. $E = \nabla V _E$

  4. $V = - \nabla E$


Correct Option: A
Explanation:

$\vec{E}=-\dfrac{\partial V}{dx}\hat{i}-\dfrac{\partial V}{dy}\hat {j}-\dfrac{\partial V}{dz}\hat{k}$


And, we know that $\nabla=\dfrac{\partial}{dx}+\dfrac{\partial}{dy}+\dfrac{\partial}{dz}$

Hence, we get $\vec{E}=-\nabla V$

Answer-(A)

Electrostatic potential energy of a shell of radius $10cm.$ When $10C$ charge is distributed over its surface.

  1. $4.5 \times {10^{12}}J$

  2. $5.4 \times {10^8}J$

  3. $4.5 \times {10^9}J$

  4. $5.4 \times {10^6}J$


Correct Option: A
Explanation:

$U = \dfrac{{k\,Q \cdot Q}}{{2R}}$

    $ = \dfrac{{9 \times {{10}^9} \times 10 \times 10}}{{2 \times 0.1}}$
$U = 4.5 \times {10^{12}}J$

Two charges $+Q$ and $-2Q$ are located at points $A$ and $B$ on a horizontal line as shown in the diagram.
The electrical field is zero at a point which is located at finite distance :

  1. On the perpendicular bisector of $AB$

  2. Left of $A$ on the line

  3. Between $A$ and $B$ on the line

  4. Right of $B$ on the line


Correct Option: B
Explanation:

$ E _1 $ = Electrical field due to $+Q$
$E _2$ = Electrical feild due to $-2Q$
There resultant is $0$ at this point